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1 Introduction

At this point in our course we have developed our formal formulation of quantum mechanics directly
from the de Broglie Hypothesis, verified that our formulation is consistent will all previously known
experimental information, such as F' = ma from classical mechanics, and even gone on to make
predictions of new phenomena using our formulation. It is important for the student to understand
that our formulation of quantum mechanics is not unique, that there is more than one valid formu-
lation of quantum mechanics. In fact there are three distinct formulations of quantum mechanics
in common use today.

Each of these formulations is quite different in terms of the physics which it emphasizes. Given
problems are usually most directly attacked within one of the formulations. Although these three
formulations are quite different, they are all known to be equivalent. All three formulations include
the following features a) events are viewed as probabilistic, b) the probability for the occurrence of
an event is given by the complex magnitude squared of the corresponding quantum aemplitude, and
c) a prescription is given for computing the quantum amplitude associated with a given event. It
is only in how the amplitudes are computed that the formulations differ. We know that all three
formulations are equivalent because we can show that they all give the same quantum amplitudes.

The formulation which we have built up in this course is known as Wave Mechanics. This formu-
lation, where amplitudes are computed by solving differential equations is due to Schrodinger. This
formulation is most convenient when working with potentials of arbitrary form in one dimension.
The second formulation is Matrix Mechanics, and is due to Heisenberg. We have had some exposure
to this formulation in our treatment of the simple harmonic oscillator (SHO) where we used opera-
tor algebra rather than differential equations to determine the allowed states. In practice research
physicists do not use matrix mechanics as originally formulated by Heisenberg. Rather, we usually
work with operator algebra using a special notation developed by Dirac, known as “bra-ket” nota-
tion. This operator/bra-ket formulation of quantum mechanics is most convenient when working
with problems with special symmetries such as the Simple Harmonic Oscillator, problems involving
angular momentum and problems involving the spin of particles, and when dealing with multiple
particle systems. In 8.05 and 8.059, you will be exposed heavily to this formulation. The third and
final of the three equivalent formulations is due to Feynman. In this formulation, one computes
amplitudes for events by summing over all ways in which the event may happen. In practice, this
is done using Feynman diagrams. This formulation is extremely powerful and is mostly used in
quantum field theory and in the study of many-particle systems such as those found in condensed
matter physics. You will use this formulation in 8.323, 8.512 and 8.334. Table 1 summaries the
basic features of the three formulations.

2 The Sum Over Histories

The Feynman formulation of Quantum Mechanics builds three central ideas from the de Broglie
hypothesis into the computation of quantum amplitudes: the probabilistic aspect of nature, super-
position, and the classical limit. This is done by making the following three three postulates:

1. FEvents in nature are probabilistic with predictable probabilities P.

2. The probability P for an event to occur is given by the square of the complex magnitude of a
quantum amplitude for the event, (). The quantum amplitude () associated with an event is
the sum of the amplitudes qp associated with every history leading to the event.

3. The quantum amplitude associated with a given history qy is the product of the amplitudes f;
associated with each fundamental process in the history.

Postulate (1) states the fundamental probabilistic nature of our world, and opens the way for
computing these probabilities.

Postulate (2) specifies how probabilities are to be computed. This item builds the concept
of superposition, and thus the possibility of quantum interference, directly into the formulation.



Formulation Developer Comput.atlon of Best suited for Course
Amplitudes
Wave Mechanics Schrodinger Solve Diff Eq’s A_rbitrary Poten‘-cials 8.04
in One Dimension

. . Heisenberg/ Operator /Bra-ket SHO, Angular 8.05,
Matrix Mechanics Dirac Algebra Momentum, Spin 8.059
s . Field Theory, 8.323,
Sum over Histories Feynman Feynman Diagrams Many-body Physics 8.512,
8.334

Table 1: Independent, equivalent Formulations of Quantum Mechanics

Specifying that the probability for an event is given as the magnitude-squared of a sum made from
complex numbers, allows for negative, positive and intermediate interference effects. This part of
the formulation thus builds the description of experiments such as the two-slit experiment directly
into the formulation. A history is a sequence of fundamental processes leading to the the event in
question. We now have an explicit formulation for calculating the probabilities for events in terms
of the ¢p, quantum amplitudes for individual histories, which the third postulate will now specify.

Postulate (3) specifies the quantum amplitude associated with individual histories in terms of
fundamental processes. A fundamental process is any process which cannot be interrupted by another
fundamental process. The fundamental processes are thus indivisible “atomic units” of history. With
this constraint of the choice of fundamental processes, individual histories may always be divided
unambiguously into ordered sequences of fundamental events, which is key to making a consistent
prescription for computing the amplitudes of individual histories from fundamental processes. The
fact that the definition of fundamental processes is not very specific is actually one of the strongest
aspects of the Feynman approach. As we will see, we may sometimes discover that we may lump
fundamental processes together into larger units which make up new fundamental processes. This
procedure is know as renormalization and is one the the great central ideas in managing the infinities
in quantum field theory.

The third postulate builds in the classical limit by allowing recovery of the classical physics
notion that the probability of an independent sequence of events is the product of the probabilities
for each event in the sequence. If we know the sequence of fundamental processes leading to an event,
the only contributing history is that sequence of processes. In such a case, we have Q = g, =[] f;
so that then P = []|f;|> = [[p:, where the p; = |f;|?> are just the probabilities for the individual
processes in the sequence, and we recover the usual classical probabilistic result.

What remains unspecified by these postulates is the specification of a valid set of fundamental
processes and corresponding quantum amplitudes f; for the phenomena we wish to describe. For
this information, we must rely upon experimental observations. It is at this point that experimental
information is input into the Feynman formulation much like how we inputted experimental infor-
mation into our formulation when we produced the forms for our operators and the Schrédinger
Equations.

A great appeal to the Feynman sum over histories approach is that often we are able to intuit
the nature and amplitudes of the fundamental events. A natural way to build the de Broglie
hypothesis A = h/p from the Davisson-Germer and G.P. Thomson experiments into the formulation,
for instance, would be to ascribe a quantum amplitude of p = exp(ika) for the propagation of a
particle with momentum Ak across a distance a.



Another common way to infer the fundamental events and associated amplitudes is to determine
the amplitudes for fundamental processes from the requirement that the Feynman formulation
always give the same results as an already established approach, such as Schrédinger formulation.
This latter procedure is referred as construction of Feynman rules, and is also how we determine
that the Feynman approach is indeed equivalent to the other formulations of quantum mechanics.
We shall follow this procedure in the next section.

3 Construction of Feynman Rules for One-Dimensional Scat-
tering

In practice, the rules for formulating the Feynman approach within a given context are often derived
from another established formulation. The overall procedure we shall follow here for scattering
problems in one dimension is the same as employed in far more complicated contexts. The procedure
for constructing Feynman rules is very intuitive and usually precedes by generalizing from specific
examples. The example with which we shall work is scattering from a potential barrier as pictured
in Figure 1.

The first stage in the process is agreeing on a pictorial notation for the relevant mathematical
functions. This we do in Section . We then immediately, in Section 3.2, make use of our new diagrams
to prove some very interesting theorems about how the transmission and reflection probabilities and
delays compare when we approach a potential from both the left and the right.

Once we are familiar with the diagrams, we then use the diagrams to compute in a new way, but
still within the Schrédinger formulation, the scattering amplitudes for a specific problem. This new
approach (Section 3.3) to computing the scattering amplitudes is sufficiently close to the postulates
of the Feynman formulation that in Section 3.4 we are able to prove that the Feynman formulation
is indeed equivalent to the Scrédinger approach, for the specific problem which we have taken up.
Section 3.5 then generalizes our results from the specific problem to arbitrary problems in one
dimensional scattering theory. As the last topic in this section we then complete our discussion by
specifying specific Feynman rules for scattering problems involving forbidden regions.

After developing the Feynman rules for one dimensional scattering, we then take up in Section
4 the mathematics of performing the resulting Feynman sums.

3.1 Construction of Feynman Diagrams
3.

From our Schrédinger formulation, we know that the allowed solutions to the TISE in the three
regions (s), (c) and (t) of Figure 1 are forward and backward traveling plane waves with wave

vectors k, k. and k, where k = \/2mE/h2 and k. = /2m(E — Vo)/h2, respectively. We may

generally choose to represent these components of the final wave function as
a(z) = e*?)\/hk/m forz <0 (1)
bz) = e ™**/\/hk/m forz <0 (2)
o(z) = e*?)\/hke/m for0<z<a (3)
diz) = e */\/hk./m for0<z<a (4)
e(z) = e*9)\/hk./m for0<z<a (5)
f@) = e t*E-D2) [ak./m for0<z<a (6)
gz) = e*@ED /) /hk/m forz>a (7
Mz) = e %9/ /hk/m for z > a. (8)

We have taken care to make each of our eight component solutions a(z) . . . h(z) to carry unit current
and to center each at an appropriate point. We list two sets of solutions ¢(z), d(x) and e(x), f(z) for
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Figure 1: A potential barrier

region (c), as the solutions in the corresponding region generally must satisfy boundary conditions
at the two end points, z = 0 and x = a.

The first step in developing the Feynman rules is to agree upon a short-hand diagrammatic
representation for all of these functions. Figure 2 shows these eight Feynman diagrams. Each time
we draw one of these diagrams, it is meant to represent one of the eight functions (1-8). We may
then use these diagrams rather than algebraic functions to write down equations.

Two important equation relate ¢(z) to e(z) and d(x) to f(z). These pairs of functions represent
the same physical state, a current flowing in Region (c) either to the right or left, respectively, and
thus are related by a constant factors,

() e'tete(z) (9)
fl@) = e*rd(a). (10)
The complex exponential factor connecting these will appear so often in our analysis of scattering

from this potential barrier that we give it a special name. As it represents the effect on the wave
function of “propagating” across Region (c), we call the factor p for “propagation,”

p= et (11)

We now make our first diagrammatic equations. To represent (9) and (9) diagrammatically, we
use the definitions from Figure 2 to produce the two diagrammatic equalities in Figure 3.

3.2 Use of Feynman Diagrams to Prove General Theorems in Scattering
Theory: Time Reversal and Parity

By giving us a short-hand notation, Feynman diagrams are very convenient for proving identities
in quantum mechanics. In this section we apply the diagrams to investigate how the transmission
and reflection probabilities and time delays compare when particles approach a collision potential
from all possible directions. This will not only give us interesting insights into the physics of the
scattering process but will also provide us with important identities for our later general discussion.
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Figure 2: Eight Feynman Diagrams corresponding to the eight solutions to the TISE
a(z),b(z), ..., h(z)

Y
?
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Figure 3: Diagrammatic Expression of Two Scattering Identities 9 and 10 (top and bottom panels,
respectively)
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Figure 4: Scattering from a general potential from various directions: a) Initial approach to the first
scatterer from the left (¢;,71), b) left-approach to the second, reflected scatter scatterer (t2,72), c)
approach to the first scatterer from the right, d) time-reversal of c¢). The two scatterers have width
a.

The results we find here are not necessary in our construction of the Feynman formulation, but
appear here to help familiarize the student with representing wave functions as diagrams.

We first compare what happens when we approach an arbitrary collision potential from the
left to what happens when we approach the mirror-image of that potential from the right, as in
Figures 4b and 4c. By symmetry and physical reasoning, the transmission and reflection amplitudes
and delays must be the same in both cases. As these two physical quantities determine both the
magnitude and phase derivatives of the quantum amplitudes, the quantum amplitudes for reflection
and transmission in these two situations may differ by at most a constant phase factor. Below in
Section 3.2.1 we give a formal proof for the interested student using Feynman diagrams that the
quantum amplitudes are precisely equal for both cases.

We then turn to what happens when we approach the same potential but from two different
directions, as in Figures 4a and 4c. Now, when the overall potential is not symmetric, the situation is
not so clear, and the results somewhat surprising. It turns out the the probabilities for transmission
and reflection are in fact always identical, regardless of the direction from which we approach
the potential! Although the time delays for reflection need not be identical, the time delays for
transmission are always equal. Finally, the sum of the transmission delays for both directions must
equal the sum of the two transmission delays. For the interested student, we use Feynman diagrams
to prove these intriguing properties in Section 3.2.2 below.

Note on notation: Because the reflection amplitudes across a barrier are different in the two
directions, we shall denote them by r and r’, where a “’” denotes right-incidence and the lack of one
denotes left-incidence. Because a theorem shows that the transmission amplitudes must always be
identical in both directions, it is not necessary is to make a distinction between ¢ and t'. Nonetheless,



we will at times use both ¢ and #' to remind us of the physical origin of the different factors.

3.2.1 (*) Scattering amplitudes from mirror-image potentials

Let us denote the potentials for Scatters 1 and 2 by Vi(z) and V2(z), respectively. These two
potentials are related to each other by reflection about the point L/2 so that Vi(z) = Va(L — z).
This linear mapping may be verified by noting that under this transform the point —a maps to
—a — L+ a and the point 0 maps to 0 — L, and from Figure 4, which are indeed the corresponding
points in the two potentials.

If 41 (z) is the scattering solution for V;(z), by symmetry we expect that ¢(z) = 1 (L — z) will
be a solution for the scattering problem associated with the potential V5(z). This is verified by
inserting ¢(x) directly into the TISE for the potential V5(z),

— g 026(2) + Val@)ola) =

_ _:_maz(az¢1(L—ar))+V1(L—$)¢1(L_$)

= B (<UL — ) + VAL — ) (L )
2

= (L~ a) + VAL ~ ) (L~ )

Eyy (L —z) ;from the TISE for state 1);
= E¢(z) (1
Algebraically, this means that if we start with the ¢ (x) pictured in 4c,

' 6—ik(z+a)

IW r < —a
1(z) =< (z) —a<z<0 , (12)
_ikea ikeo

e

! e
ke /m tn NN

0<zx

where ?(z) indicates the unspecified form for the solution within the scattering region, and then
form ¢(z) = (L — x), we find a solution to the TISE for Scatterer 2 of the form

—ik(L—=z+a) ) eik(@—(L+a))

reZ BTt - -
L Ty L-—z<—a t T L+a<z
d(xr) =< 2L —2z) —a<L—-z<0 =< (=) L<z<L+a
e—ike(L—2) ) gike(L—2) . gikc(@—L) ) e—ikc(z—L)
Ak /m tn Vhke/m O0<lL-z N TR Ty <L

This algebraic relationship may be summarized in a very intuitive way by stating that we may flip
around any Feynman diagram, as indicated in Figure 5, and produce a valid solution to the TISE.
The connection between the quantum amplitudes comes about when we inspect the result of
the flipping process. The result in Figure 5 shows a perfect, properly normalized scattering wave
function, with a unit wave approaching Scatterer 2 from the left and no returning current from the
side opposite the source. We may therefore read the quantum amplitudes for left-incident reflection
and transmission from Scatter 2 from the new diagram as r{ and ¢}, respectively. However, from
Figure 4c we see that these quantities were originally defined as r2 and t5. Therefore we conclude

ry = 1]
ty = t,
that the quantum amplitudes for reflection and transmission when approaching mirror image po-

tentials from opposite directions are exactly equal, which is consistent with what we expected on
physical grounds.



(x=-a)  (x=0)

(x=L)  (x=L+a)

Figure 5: Reflection symmetry expressed in Feynman Diagrams

3.2.2 (*) Scattering of the same potential from two different directions: Time reversal
symmetry

Approaching a potential from the left looks very much like what we expect to see when playing
backwards a movie of what happens when we approach the potential form the right. We now use
the idea of reversing time to study these two distinct processes. The only place where ¢ appears in
the TDSE is next to the time derivative operator,

. h o,

Reversing time (letting ¢ — —t) would simply change the sign on the first term in this equation.
We could achieve the same effect more simply by just letting ¢ — —i. Inverting the sign on i like
this is the process of complex conjugation. Thus, to study what happens when we reverse time, we
consider what happens when we take the complex conjugate of the wave function. As we will see,
this has precisely the indented effect: doing this to a solution to the TISE produces another valid
solution, but one in which the direction of all currents is reversed.

The reason why complex conjugated wave functions also satisfy the TISE is that the TISE is a
real differential equation,

_:_ma§¢(x) + V(2)y(z) = Ey(z).

Because no factors of i appear explicitly in this equation, taking the complex conjugate of both
sides gives,

h2 * * *
R 82 () + V(W ) = B ().
We thus see that if ¢)(z) is a solution to the TISE, then so is the function ¢(z) = ¢*(x).
Algebraically, the result of doing this to the wave function (12) is

( ' *eik(z+a.)

1 SRk r< —a

p(z) =4 () ' —a<2z<0 . (13)
gler 4 (rp)* et o<y
hke/m Vo Jrke/m
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Figure 6: Use of time reversal symmetry to compute left- from right-scattering amplitudes

Figure 4d shows the corresponding Feynman diagram.

Our new solution to the TISE differs from the original in two ways. First, we have had the
intended effect of reversing the direction of all currents in the wave function. A subsidiary effect
is that the associated quantum amplitudes are all complex conjugated as well. Although we began
with the wave function for scattering from Scatter 1 from the right, inspection of the new solution
which we have generated to the TISE shows that we cannot use it directly to determine the scatting
amplitude for Scatterer 1 from the left. The new wave function describes an odd, but completely
time reversed scenario, where particles now first approach the potential from both directions and
then are transmitted out in a single beam moving to the right.

Although the new wave function which we have produced does not correspond to a familiar
scenario, because the TISE is a linear equation, we may make a linear combination of the wave
function (d) with the original wave function (c) and produce another solution to the TISE. By the
proper choice of linear combination, we may arrange to reproduce an appropriate wave function for
left-incident scattering. The appropriate combination is carried out diagrammatically in Figure 6,
from which we may extract the reflection and transmission amplitudes for approaching Scatterer 1
from the left.

10



Figure 7: A unit left-incident current

Identifying terms from Figure 4a, we first conclude that

(1) = L2 0D 6D) (@)@
(1) (1)
k

(t1),

where we have used conservation of probability, |rf|?+|t]|> = 1. This result is somewhat surprising,.
Physically, the equality of left- and right-incident transmission amplitudes means that the transmis-
sion probabilities and time delays for a barrier are independent of the direction of approach. The
barrier need not be symmetric!

Of course, if the transmission probabilities are the same for both directions, then the probabilities
for reflection must be the same. The situation for the reflection time delays a little more subtle.
Comparing Figures 4a and 6 shows that (r1) = —(r])*(¢{)/(¢})*. Rearranging and using the fact
that t; = ¢} leads to (r1)/(r})* = —(t1)/(¢})*. Analyzing the phases in this relationship we see that
¢ry + ¢r =T + Pt + ¢y . Because the derivatives of these phases determine the time delays, the
sum of the time delays for reflection in both direction is exactly the same as the sum of the two time
delays.

An interesting special case is that of a symmetric scatterer. In this case, the reflection delays
in both directions must be equal by symmetry, but then because they give the same sum as the
two equal transmission delays, the time delay for reflection and the time delay for transmission are
identical for a symmetric scattering potential.

3.3 Application of Diagrams to Compute Scattering Amplitudes

Let us now use our diagrams to compute the scattering amplitudes for the potential of Figure 1.
We begin with an incoming wave from the source carrying a unit current, as expressed in Figure 7.
This diagram represents the wave function a(z), which is zero in Regions (c) and (t), and, as such,
violates the boundary conditions at x = 0.

As we have learned, to satisfy the boundary conditions at x = 0, we must include both a
transmitted and reflected current, with factors arranged to satisfy the boundary conditions in the
presence of a unit incoming current. These are precisely the same conditions we impose when
computing scattering from an upward step as in the “Notes on Scattering Theory.” Including
reflected and transmitted waves, r1 - b(z) and t; - ¢(z), with the same prefactors r1 (k) and #1(k) as
we found for scattering from a single upward step,

7‘1(k) = (14)

11
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Figure 8: Satisfying the boundary conditions at x = 0

2vkk,

hk) = o5

will therefore satisfy the boundary conditions at z = 0. The diagrammatic representation of the
present stage in our solution to the TISE appears in Figure 8. Here, the factors r; and ¢, appearing
next to the reflected and transmitted beams are multiplicative factors. As we will see in Section
3.4, this determines the appropriate quantum amplitudes for the fundamental events of reflecting
and transmitting across the first step.

The wave function diagrammed in Figure 8 has been designed to satisfy the boundary condition
at z = 0 but still represents a zero wave function in Region (t). The present solution now violates
the boundary condition at £ = a. To match this boundary condition, we follow a procedure similar
to that in the previous paragraph. However, as our standardized form for scattering amplitudes
is based upon current carrying functions centered at the point of matching boundary conditions,
2 = a in this case, it is best to first use (9) to express our solution in Region (c) in a form centered
at = a. This results in the function ¢1p - e(z) as indicated in Figure 9. As we will see in Section
3.4, this determines the appropriate quantum amplitude for the fundamental event of propagating
across the barrier.

Now we face the standard scatting boundary condition problem for a downward step in potential,
except that rather than a unit incoming current, the incoming current carries a factor ¢; p. We know
that the solution

pe(z) = e(z)+r2(k)f(z)
¢e(z) = ta(k),

satisfies these boundary conditions when 75(k) and #2(k) are the usual scattering amplitudes from
a downward step,

k.—k

nl) = (15)
ta(k) = zﬁ

Because the TISE is linear, we may multiply this solution to the TISE by any constant factor and
still satisfy the boundary conditions at * = a. To match our incoming wave t;pe(z), the factor
which we should use is clearly ¢;p. Doing this then generates the waves t1prs - f(z) and t1pts - g(z)

12
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Figure 10: Satisfying the boundary conditions at z = a

13
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Figure 11: Propagating back to z = 0 and re-satisfying the boundary conditions

as diagrammed in Figure 10. As we will see in Section 3.4, this determines the appropriate quantum
amplitudes for the fundamental events of reflecting and transmitting from the second step.

The wave function diagrammed in Figure 10 satisfies the boundary conditions at x = a; however,
the new reflected current in Region (c) designed to satisfy the boundary condition at = a now
violates the boundary condition at £ = 0. To match this boundary condition, it is most convenient
to use the identity (10) to re-express this solution in terms of a wave centered at x = 0, resulting
in typrop - d(z), as indicated in Figure 11. This now brings a new uncompensated current to the
boundary conditions which previously had been in perfect balance at z = 0. Because the TISE is
linear, to satisfy the boundary condition at = 0 we need only add the reflected and transmitted
waves corresponding to the new current t;prop-d(z). This new current now approaches a downward
step from the right. As shown in Section 3.2.1, the quantum amplitudes r}, ¢} for this are the same
as those for approaching the mirror image from the right,

k. —k

!

= 1
r1(k) P (16)
, _ 2Fk,
k) = kE+k.

Making the appropriate adjustment for the fact that the incoming wave carried the factor ¢y prop
instead of 1, the reflected and transmitted parts needed to balance the boundary conditions at
z = 0 are t1prapr] - ¢(x) and t1prapt] - b(z), respectively. This ultimately determines the quantum
amplitudes for reflection and transmission when approaching the first step from inside the barrier.

These contributions are included in Figure 11. We now have two contributions to the final
reflected current. Note that the presence of two forward arrows in Region (c) and two backward
arrows in Region (s) (representing the functions ¢(z) and b(z) respectively) means that these terms
should be added in producing the total wave represented by the diagram.

Having adjusted the boundary condition at x = 0, we have once again disturbed the boundary
condition at £ = a. Figure 12 shows the result of propagating this disturbance to the other side of
the barrier and adjusting the boundary condition at = a. The result is a second contribution to
the final transmitted current and another term which will then require adjustment of the boundary
condition at z = 0.

We may continue this process, alternately satisfying the boundary conditions at £ = 0 and at
Z = a. At each stage in the process, some current leaks out of Region (c) so that the violation of
the boundary condition at z = 0 or x = a gets smaller and smaller. Continuing the processes ad

14
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Figure 12: Propagating back to = a and re-satisfying the boundary conditions

infinitum eventually leads to a solution which satisfies all boundary conditions, and we will have
built up a solution to the TISE with a proper unit left-incident current and no returning current
from the far side of the source. The total of the factors multiplying the reflected current b(z) and the
final transmitted current g(z) will then be quantum amplitudes for reflection R(k) and transmission
T(k) from the entire barrier. As we see from Figure 12, these amplitudes are therefore

R(k)
T(k)

r1 + tipropt) + ... (17)
tipta + t1(propry)pta + . ..

As we shall see in the next section, the Feynman formulation gives us an organized, extremely
efficient short-hand for generating these factors.

3.4 Extracting the rules

Let us now see how the expressions (17) which we determined for the transmission and reflection
amplitudes fit within the Feynman formulation. We first focus on the amplitude for transmission
T(k). Figure 12 shows the generation of two of the terms which contribute to the sum which gives
the final transmission amplitude. According to Postulate (2) of the Feynman formulation, each of
these terms corresponds to an individual history leading to transmission across the barrier.

From the form of the amplitude associated with the first term, ¢;pts, we know from Postulate
(3) that three fundamental processes make up the first history. These processes (and associated
quantum amplitudes) are 1) transmission across the first step (¢1), propagation across the barrier
(p), 3) transmission across the second step (¢2). This sequence of fundamental processes is clearly
one possible history which we associate with the final transmission of a particle across the barrier.
Figure 13.1 shows a short-hand for representing this sequence of fundamental events. We now
connect the arrows from Figure 13 and place the factor associated with each fundamental process
on the diagram near where the corresponding process occurs. The amplitude associated with the
Feynman diagram for this first history is simply the product of all factors written near it, where the
values of these and the factors used below are given by (11,14,15,16).

The next term contributing to the transmission amplitude from Figure 12 is t; propripts. This
term was generated as we satisfied boundary conditions in the sequence of events which Figure 13.2
illustrates: transmission through the first step (¢1), propagation across the barrier (p), reflection
from the second step (71), propagation back across the barrier (p), reflection from the first step
as approached from the right (r}), propagation across the barrier (p) and transmission across the
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Figure 13: List of Histories Leading to a Transmission Event
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second step t5. This again is another history which we associate with transmission across the barrier
as we generate reflections and transmissions at all points for which there is a change in the potential
and therefore the possibilities of a reflection. We also include factors for the processes of crossing
the regions in between these scattering points. Clearly, as we continue to patch up unbalanced
boundary conditions we may generate an arbitrary number of reflections back and forth within the
barrier before the final transmission process occurs. The third order term in the sequence is also
indicated in Figure 13.

The same logic applies for the terms leading to reflection. The Feynman diagrams for reflection
from the barrier are shown in Figure 14. The first history, Figure 14.1, is just reflection from the
first step (r1) and corresponds to the first term contributing to the b(z) wave function in Figure 12.
The next history involves transmission through the first step (1), propagation across the barrier
(p), reflection from the second step (72), propagation back across the barrier (p), and transmission
through the first step approaching now from the right (¢}). Successively higher terms then involve
more ricochets within the barrier before the final transmission back into Region (s). Figure 14 also
gives the digram for the third term.

3.5 General rules for all scattering problems in one dimension

To implement the Feynman Formulation as described in Section 2, we need rules for deciding what
are the valid histories which we must consider in our sum for Postulate (2) and determining the
fundamental events and their quantum amplitudes for Postulate (3). This section extracts general
lessons from the specific rules which we determined in the discussion of the previous section of
scattering from the barrier of Figure 1.

In Section 3.4 the histories which we considered for transmission or reflection from a collision
potential arose from all ways in which a final transmission or reflection is eventually generated after
all sequences of transmissions or reflections from the points in space for which we must generate
reflections to match the proper boundary conditions. As we know, such reflections are generated
wherever there is a disturbance in the potential. This then completes the specification of the histories
which must be considered for Postulate (2) for any one-dimensional scatting problem:

The histories leading to the eventual reflection or transmission of interest for a scat-
tering event in one dimension consist of all sequences of transmissions or reflections
at points of disturbance in the potential.

The most common such disturbances include sudden steps (discontinuities) in the potential as in
Figure 1 and also often consider reflection generating terms in our potential such Dirac d—functions.
In Section 6 we consider problems involving smoothly varying potentials.

With the allowed histories specified, we must then complete Postulate (3) by specifying the
fundamental events which make up the histories and the associated quantum amplitudes. As we
saw in Section 3.4, the final quantum amplitude for a given history consists of the product of the
reflection and transmission amplitudes associated with each boundary condition and propagation
factors between matching boundary conditions. The fundamental events are thus scattering from
points of disturbance in potential and propagation across regions of constant potential.

The quantum amplitude for propagation is simple in form, we have seen that it is simply p =
exp(ika), where a is the length of the region and k is the constant wave vector across the region.
The quantum amplitudes for scattering from steps and §-functions are simple to describe but must
be solved for on an individual basis. As we saw in Section 3.4 the quantum amplitude for each
fundamental reflection and transmission process is just what is required to satisfy the boundary
conditions in the Schrédinger approach, and are therefore the same quantities which we originally
defined as the quantum amplitudes for scattering from that disturbance in isolation.

Apart from the discussion of Feynman diagrams for classically forbidden regions in Section 3.6
(which is optional material provided for the interested student), this, completes the specification of
Feynman rules for scattering in one dimension. We here state the final set of rules for Postulate (3)
in their full general form including the treatment of classically forbidden regions.
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The fundamental processes for Feynman histories in one dimensional scattering are
the transmission and reflection at each disturbance in the potential and propagation
(or penetration) events between the disturbances. The quantum amplitude for prop-
agation (penetration) is p = exp(ikz) (p = exp(—ax)) where k (o) is the constant
wave vector (decay constant) characteristic of the region crosses. The quantum
amplitudes for the transmission and reflection at each disturbance are the usual
scattering amplitudes for each disturbance in isolation.

3.6 (*) General Rules for Classically Forbidden Regions: Analytic Con-
tinuation

We have so far treated with the propagation factor across a classically allowed region, finding that
whether the particle is moving to the left or the right, this factor is given by p = exp(ika) where
a is the length of the region and k is the constant wave vector across the region. In general, we
will also need a propagation factors for forbidden regions. The zero-centered form for an acceptable
wave function for a forbidden region extending in the region x > 0 is ¢(x) = exp(—ax) where
a = /2m(V — E)/h. A corresponding wave function centered at the point z = a will be e(z) =
exp(—a(z — a)). In the same way as we generated the propagation factor for a classically allowed
(9) region, these two wave functions are related by the propagation factor for a classically forbidden
region, ¢(z) = pe(z) where p = exp(—aa).

For classically forbidden regions the exponential solutions carry no current and we must decide
which of the two exponential solutions exp(+ax) we regard as traveling to the right and which
as traveling left. We must also decide how to normalize the standard unit solution. Any choice
of normalization is valid so long as we are consistent in our assignment of quantum amplitudes.
However, we seek to make a choice in normalization which leads to the most natural assignment of
quantum amplitudes.

As we observed in the previous paragraph, when a left incident particle collides with a forbidden
region extending across the entire region > 0, the only acceptable form for the solution for 2 >
is exp(—a), which therefore must play the role which the transmitted wave exp(ikz) plays in the
classically allowed case. We thus identify exp(—azx) as a solution “penetrating to the right” and
exp(azx) as a solution “penetrating to the left.” We then use these forms as the sole component of
the solution in the transmitted region when scattering into a forbidden region from the left or right.

The mathematical way of expressing this identification is to use the concept of analytic con-
tinuation, which, in loose terms, simply means allowing a variable which we normally regard as
real to take on complex values. Consider for example the wave vector k = \/2m(E — V,)/h which
insures that the functions exp(+ikz) satisfy the TISE for a potential V,,. In classically forbidden
regions (E < V,) we generally do not work with k£ because it becomes imaginary. However, there
is no mathematical reason preventing us from working with imaginary k. The mathematics used
in deriving our solutions to the TISE works just as well for complex numbers as it does for real
numbers.

An imaginary k simply means that the solutions exp(+ikz) are actually the exponentially grow-
ing and shrinking solutions which we expect. In fact,

k= V2m(E-V,)/h

= V(-1)2m(V, - E)/n
= +iv2em(V, — E)/h

= Ziaq,

so that exp(+ikz) = exp(+azx), which is precisely correct. Similarly, we may take any wave function,
which had been computed under the assumption that a given region is classically allowed, and by
substituting k¥ = +ia find a valid solution for the classically forbidden case. The only ambiguity
which we must resolve is the choice of sign for k. To resolve this, note that if we take a classically
allowed scattering solution, the wave function in the transmitted region appears as exp(ikz). If
the transmitted region were actually forbidden, then the solution there must behave like exp(—axz).

19



The only way for this to happen is if we make the choice in sign,
k =ia. (18)

This simple observation determines all of the rules for fundamental scattering processes involving
forbidden regions. To determine the quantum amplitudes for a forbidden region, simply use the
corresponding amplitudes for the classically allowed case and make the substitution (18). For
instance, the quantum amplitude for penetration through a region a (as opposed to propagation)
is then obtained as p = exp(ika) = exp(i(ia)z) = exp(—ax), consistent with our previous result.
Similarly, the reflection and transmission amplitudes for crossing from an allowed region with wave
vector k to a forbidden region with decay constant «, crossing from a forbidden region with decay
constant a to an allowed region with wave vector k, and crossing from a forbidden region with decay
constant a; to an other forbidden region with decay constant as, are

k—ia 2vVika

= t =

"k tia k+ia
ia—k 2vVika

r= - t= -
k+ia k+ia

o a1 — 09 = 2\/041052

Carta g tay’

respectively.

The alternate way of determining the quantum amplitudes is to follow the procedure given in
Section 3.5, solve the TISE explicitly for the case of interest and then to pick off the prefactors
multiplying the unit wave functions when there is a unit incident beam. This procedure depends on
the choice of unit wave functions. The choice which is consistent with the amplitudes of the previous
paragraph is obtained by analytic continuation of the unit current classically allowed functions,

W = (19)

e—aaf
NG

where ¢l(f ) and zpﬁf ) are the unit left- and right- penetrating wave functions, respectively.

¥(z) =

4 Feynman Sums: two scattering centers

The Feynman rules at which we arrived in Section 3.5 are quite intuitive and we most likely could
have guessed at them from the beginning based upon our physical intuition. The bulk of the dis-
cussion in Section 3 has been to demonstrate the equivalence of the Feynman and Schrédinger
approaches for scattering in one dimension and to establish the Feynman rules. Once this is accom-
plished, it is a simple matter to draw out and label the diagrams in Figures 13 and 14. The final
transmission and reflection amplitudes are then the sums over all the corresponding diagrams of the
product of all of the labels. The result is precisely what we found in the Schrodinger formulation
but now obtained in an extremely elegant and simple manner.

The raw power of the Feynman approach is illustrated by the fact that the sums (17) which we
have derived are completely general. They are valid for any scattering potential made from two
scattering centers, not merely the two equal but opposite steps which we originally had in mind.
Figure 15 shows another example of a scattering potential involving two scattering centers made
from the general barriers we studied in Section 3.2. As the figure shows, the quantum amplitudes
for this far more complicated potential are described by precisely the same Feynman sum. The
Feynman approach brings out the essential physics which this potential and the simple barrier
share.
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Figure 15: General Resonant Scatterer: two symmetric scatterers of width a separated by a propa-
gating region of width L. Outside of the two scatterers, the potential is constant.
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The sums (17) themselves are also rich in physical structure which we may exploit in determining
their values. Each term in the transmission sum, for instance, involves transmission into the barrier
region t1, some number (possibly zero) of repetitions of the basic ricochet sequence propr, and then
a final propagation across the scattering region and transmission out of the second scatterer pt'.
Organizing the sum according to this physical principle, we find

T = t1-pta+ti-(prapri) - pta +t1 - (propry)(prapry) - pta + ... (20)

After factoring the common parts from the histories, we are left with an easily summed standard
geometric series,

T

t1(1 + (praprt) + (propriy)? + (prapri)® + .. )pts (21)

=t pta

1 — (prapry)
t1pto
1 — (propry)’

This factoring into common end-point events and a basic repeating sequence is a common feature
of most Feynman sums, even in far more complicated contexts. A basic repeating unit similar to
the ricochet factor, for instance, appears in field theory to represent the self-energy of the electron
and eventually leads to the theory of renormalization of the electron mass. Note that there is no
mathematical need to write the ricochet factor as propr|. We could just as well write r{rop?. The
former form, however, helps us to keep in mind the physical origin of the term.

The sum for reflection is only slightly more complex. The first term is a different from the others
because it is the only term which involves reflection when approaching the first barrier from the left
(r1). All of the other terms involve the processes needed to reach the second barrier and reflect back
from it and out the entire barrier (¢t1p - r2pt]). These terms also may contain any number, possibly
zero, of ricochets between the two barriers (roprip). Organized this way, the sum becomes

R = ri+tip-ropt] +tip- (raprip) - rapth + tip - (roprip)® -ropty + ... (22)
= ri+tip- (L4 (raprip) + (raprip)® +...) - rapt}
t1propt!
S 1PTr2pty

1 — (raprip)’

4.1 Analysis of the results: resonant scattering

The results (21) and (22) are general for any two scatterers. In the the special case where the two
scatters are mirror images of one another and separated by a propagating region, we find a very
beautiful phenomena known as resonance, in which at an infinite sequence of discrete incoming
energies, the transmission probability becomes exactly one, regardless of the form of the individual
barriers. This means for instance, that although the probability for a macroscopic object quantum
tunneling through a wall may be very low, the probability for tunneling across a double wall becomes
one for a whole series of special incoming energies. To prove this we need only the result (21) and
the general scattering relations t; = t3, 7{ = r2 from Section 3.2.
Because the t’s and r’s are equal, let us define

t =P =t =t

and

r=\Pe =rl =1y
where P, = 1 — P, are the probabilities for transmission and reflection across the individual barriers
(which are direction independent), ¢} /v gives the time delay for transmission across the barriers,

and @ /v gives the time delay crossing the barriers from the inside, where v, is the appropriate
classical velocity.
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The transmission probability across both barriers is then

Pr = |T)?
3 ‘ tpt |?
1 — (prpr)
12p|?
T A=y
— P
1= ((r)2(p*)? +r2p?) + P?
= Pt2
1 —2R(r2p?) + P?
P?
= 3_ 2R (P, 2i(énthel)) + P2
pP?
= 1-2P,cos2(¢, + k.L) + P2
P?
= 1-2P.(cos2(¢, + kL) — 1) — 2P, + P?
_ P}
~ (1= P2 —2P,(=2sin’*(¢, + kL))
— Pt2
"~ P2 +4P,sin’(¢, + kL)
N
Pro= o (23)
1+ 4?:5 sin®(¢, + k.L)
Thus, whenever ¢, + k.L = nm wheren = ...,—1,0,1,.. ., the transmission probability goes to one.

Generally, ¢, does not vary very rapidly with the incoming energy, so that this condition is met for
an infinite series of special values of k. at spacing Ak, ~ n/L.

4.2 Specific results for the barrier potential

As a specific example of resonance, consider the simple barrier potential of Figure 1 with which we
started. In this case the spacing between the barriers is L = a. From (15), the phase of r is 7 and
the transmission and reflection probabilities are

ak k
P = et
¢ (k + k.)?
_ 2

P (k — k) |
(k + k. )2

respectively. According to (23) the final transmission probability is then

1
Pr = (24)
1+ %7(162,%:;)2 sin2(kca)

And, this is precisely what we would find by direct solution of the Time Independent Schrédinger
Equation (TISE)!

In Figure 16, we plot the transmission amplitude Pr as a function of the momentum k. of the
particle as it crosses the collision region, for various values of the height of the potential step V,. In
the figure, T}, the kinetic energy of a particle bound in an infinite square well potential of length a,
sets the energy scale. Perhaps the most striking result in the figure is that precisely at the values
k. = nm/a, we find perfect probability for transmission, Pr = 1. Also as expected, when k. becomes
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Figure 16: Transmission Probabilities across a square potential barrier

very large, the presence of the barrier becomes less and less significant, so that the transmission
probability approaches unity at large k. regardless of whether k. is at one of the resonances. As we
increase the height of the barrier, as we would expect, the transmission probability for low values of
k. decreases rapidly. As a consequence, the resonances become very narrow, as seen in the figure.

5 Three Nobel Ideas: Renormalization, Renormalization Group,
Anderson Localization

5.1 Renormalization: Three scattering centers

Let us now consider scattering from a potential with three disturbances, such as the three d-functions
of strength D in Figure 17. The scattering amplitudes for a potential V(x) = Dd(z), as determined
from solution of the TISE, are
q
ro= g p (25)
ik
ik—q’

where ¢ = mD/ 1%, Because the d-function is symmetric, the scattering amplitudes are identical
for both left- and right- incidence. Figure 17 shows four diagrams for transmission which illustrate
the far richer variety of diagrams which we now face. Although there is a much richer variety, the
number of these diagrams is still countable as they were in Figure 13. The meaning of the thick
lines in the diagram will be explained presently.

Again, we seek a physical principle to organize the Feynman sum. The result will be a general
form which is independent of the nature of the three scattering centers, and for which we may
generate specific results by substituting in particular values for the quantum amplitudes.
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Figure 17: Transmission diagrams from a triple scatterer
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The first two diagrams shown are part of an infinite subsequence of diagrams where the particle
ricochets an arbitrary number of times between the first two barriers and then travels directly across
to and though the third barrier. The sum of this subset of diagrams is

[T]h tptpt + t(prpr)ptpt + t(prpr)’ptpt + ...
(tpt + t(prpr)pt + t(prpr)’pt + ...) pt

T2 pt,

where the 75 factor we recognize as the complete Feynman sum for transmission across the first two
barriers. The physical reason why we were able to factor this term out is that all processes which
lead to transmission across the three barriers, no matter how complicated, begin with a sequence
which carries the particle across the first two barriers. The sum of all of these beginning parts, 15,
is clearly the sum of all ways in which we may cross the first two barriers and therefore must be the
Feynman amplitude for transmission across the two first two barriers viewed as an isolated unit,
hence the notation 75. All that we are doing is changing our view of the system and its fundamental
processes. We are now beginning the consider the potential as consisting of two scatterers, the first
being the first two d-functions taken as a unit and the second being the third d—function.

In the third and fourth diagrams of Figure 17, the complete processes of all possible ways to
transmit across the first two barriers as a unit is indicated by a very thick line. Such a notation is
sometimes referred to as a dressed interaction in many-body physics. By using this notation, the
diagrams in Figures 17.3 and 17.4 now serve to represent two different infinite subsets of diagrams.
The total quantum amplitudes of these two subsets are given by the product of the labels in the
diagram, Toprp - r - pt and Toprp - tprpt - pt, respectively.

The idea of summing together an infinite subset of diagrams into a unit to produce a new
fundamental process with its own quantum amplitude and diagram is known as renormalization.
As we shall see, renormalization is a very powerful tool in organizing infinite sets of diagrams. This
idea is used to deal with certain infinities which arise in quantum electrodynamics, the theory for
which Feynman shared the Nobel prize with Schwinger and Tomonaga in 1965.

The the third and fourth diagrams in 17 begin another sequence of diagrams which we must
consider. In this sequence, after somehow managing to penetrate through the first two d-functions,
the particle reflects once off of the third §-function, then reflects from the unit consisting of the
first two d—functions, after some number of ricochets, and then finally travels directly across to
and though the third barrier. The sum of this infinite collection diagrams clearly involves R}, the
amplitude for reflection from the right from the renormalized two é-function unit. Algebraically,
this part of the sum is

[T]a = Toprp-r-pt+ Toprp-tprpt-pt+ ...
= Toprp-(r+tprpt+...)-pt
= TyprpR,pt.

We may now combine the renormalized left-transmission 75 with our new renormalized right-
reflection R), from the double d-unit to describe all of the transmission diagrams for the triple
0-potential. So far, we have dealt with direct transmission [T']; = Typt and transmission after one
ricochet between the third § and our renormalized §—function pair, [T'] = TeprpRypt. The final
diagram in Figure 17 gives the next set of terms in this renormalized sequence. In Figure 17.5
there are two ricochets between the renormalized double-§ unit and the isolated third § function.
Continuing in this way, now simply generated the general sequence of scattering between two barriers
shown in Figure 15 but where where the nature of the two scatterers is different.

This completes the renormalization process. We now have a new, simpler set of Feynman rules
for the problem at hand. The new set of rules now has a different set of fundamental processes,
namely reflection and transmission across the first two d—functions as a renormalized unit, trans-
mission and reflection from the third d—function, and propagation between them. The fact that the
Feynman formulation is not specific about the form of the fundamental processes is what makes the
renormalization process possible. Renormalization represents a change in what is considers to be
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the fundamental processes. The condition on what may be renormalized is that any history must
be able to be sequenced unambiguously into the new fundamental processes. Grouping the first two
d—functions together as a unit clearly satisfies this condition, because a scattering event from the
third 6—function can never be interleaved with the ricocheting between the first two §—functions.
One could not, for instance, renormalize the outer two §—functions into a single unit, because then
scattering processes within our “fundamental process” of scattering between the outer j—functions
could be interrupted by scattering processes from the central §—function.

The final transmission amplitude across the three scatterers has now been reduced to a scat-
tering problem between two scatterers, a renormalized unit made from the first two and the third
“bare” scatterer. We may therefore use the result (21) with five substitutions. First, the propa-
gation amplitude between the two barrier now becomes the transmission amplitude between the
renormalized unit and the bare scatterer, p — p. The transmission across the first barrier now
becomes transmission across the renormalized unit, ¢t; — T5. Reflection off of the first barrier from
the right now becomes reflection from the renormalized unit, r; — R). Finally, the reflection and
transmission amplitudes from the second barrier become the reflection and transmission amplitudes
from the isolated bare scatterer, ro — r and t» — t, respectively.

Alternately, we get precisely the same result by performing the Feynman sum corresponding to
Figure 18,

Ts = To-pt+Ts-prpRy-pt+Ty-(prpRy)? -pt+ ... (26)
_ Tgpt
1 — (prpRb)’

As we have used no special properties of the amplitudes, this result is general. As we saw in Section
3.2, the transmission amplitudes in both directions are equal for any potential so that the amplitude
for right-incident transmission is the same, T4 = T5.

Reflections from three general scatterers may be handled in the same way. We apply (22), where
again p — p, t; = T, r} = R}, and ro — r, but now we need also reflection from the first barrier
to become reflection from the renormalized unit r; — Ry and transmission from the right from
the first unit to become transmission from the right through the renormalized unit, | — Ty = T,
where the equality follows from the discussion in Section 3.2.2. This gives,

ToprpT;
1 — (rpRyp)’
Again, one could obtain the same result by drawing and summing the appropriate renormalized
Feynman diagrams.

Because the reflection amplitudes from the left and right need not be equal, to maintain generality
we must give also the right-incident reflection amplitude Rj. Again we use (22) where now p — p,
transmission across the first barrier into the scattering region is right- transmission through the
bare scatterer t; — t', reflection from the second barrier is right-reflection from the renormalized
unit ro — R}, direct reflection from the first barrier is right-reflection from the bare unit 1 — 7/,
the ricochet reflections from the first barrier are left-reflection from the bare scatterer i — r and
final transmission through the first barrier is left-transmission through the bare unit t; — ¢. The
final result is then

Rs = Ry + (27)

t'pRypt
1 — (Ryprp)
Again, one could obtain the same result by drawing and summing the appropriate renormalized
Feynman diagrams.
To complete the computation of the scattering amplitudes For the specific case of the three
0—functions in Figure 17, we take p = exp(ika) and r = ' and ¢t = t' from (25). In terms of these
amplitudes, the specific values for T5 and R}, come directly from (21) and (22),

Ry =71+ (28)

tpt
T, = —F

1 — (prpr)
R = r4 tprpt
> 1— (prpr)’
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Figure 18: Complete set of renormalized transmission diagrams from a triple scatterer
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5.2 Renormalization Group and Summing Uncountably Infinite Diagrams:
An infinite crystal

In Section 5.1 we showed how renormalization, redefinition of fundamental processes into larger
units, allowed us to organize and perform the Feynman sum for a three scatterers. In this section,
we take the idea to the next level in order to analyze scattering from a infinite perfectly periodic
array of scatterers, corresponding to the physics of electrons moving through a crystal. (A crystal is
a perfectly regular array of identical atoms, each of which, by renormalization into a single unit, may
be viewed as a single scatterer.) For concreteness we will consider an infinite array of d—functions
but, again the Feynman approach will allow us to derive general formulae which differ from system
to system only in the specific values assigned to the scattering amplitudes of the fundamental units.

Figure 19 illustrates the potential which we consider. The infinite variety of Feynman diagrams
describing electrons which are transmitted into the crystal and never return is so large that they
are no longer countable, there are in fact as many of these diagrams as there are real numbers. We
must be very clever in organizing the sum of these diagrams.

Our strategy here is to apply the idea of renormalization over and over and study the behavior
of the system in the limit of an infinite number of renormalizations. Figure 19 illustrates how this
process allows us to study an infinite crystal. Our strategy is to build upon the results of Section 5.1.
We now take the quantum amplitudes for the first three scatterers taken together as a renormalized
unit and combine this unit with the fourth scatterer to find the quantum amplitudes for the first four
scatterers as a renormalized unit. We then combine this quadruple unit unit with the fifth scatterer
in the sequence to produce the transmission amplitude for the first five. We continue the process to
build up the amplitudes for an infinite crystal. The idea of applying successive renormalizations like
this is known as the Renormalization Group. It represents the intellectual content of Ken Wilson’s
Nobel prize in 1982.

Specifically, at each step in the process, we take the scattering amplitudes for the first n units
T, = T!,R,, R}, and combine them with the quantum amplitudes for the next bare scatterer in
the sequence t,41 =t/ |,"n41,7),,; and the propagation factor separating these two units pp1.
The mathematics of this is precisely the same as we followed to produce T5 = T3, Rs, R} from
Ty =Ty, Ro, R, in (26,27,28). The general result is

Tnpntitnyl
Totr = 29
" 1 = (Pnt1Tn41Pnt1 R) (29)
Tnpn—i—lrn—i-lpn—i-lTl
R,y1 = R+ n
n-+ n 1-— (Tn-i-lpn—i-lRInpn—i-l)
foo— 1 Pnt1 Rypnyitngn
mr "L — (R pniaTny1pngr)’

where the initial case is that 71, Ry, R} = t1,71,r] as indicated in Figure 19.

The behavior of a single physical quantity, such as the transmission coefficient, as a function of
the number of times the renormalization is carried through is known as the renormalization flow of
the quantity. Figure 20.1 shows the renormalization flow of T}, in the complex plane for a small value
of the incoming energy. The first of the connected points on the plot, approximately 0.45 — 0.27,
shows the value (25) for the transmission amplitude across one d—function at this energy. The
transmission probability across one —function at this energy is therefore approximately P;, ~ 0.24.
The successive points on the plot show the transmission amplitudes T}, across n J—functions at this
energy as computed according to (29) with a very simple computer program. The plot shows that
as n — 00, Tj, — 0 and therefore these electrons do not have enough energy to propagate through
the crystal.

Figure 20.2 shows the flow at a slightly higher value of the energy. Now something interesting
happens. As n increases, the transmission amplitudes do not approach a limit. They cycle around
in the complex plane in a figure-eight pattern and never approach the origin. These electrons
may therefore propagate through the crystal without returning. The fact that the transmission
amplitudes do not settle down to a single point indicates that the electronic wave function is sensitive
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Figure 19: Renormalization Group Calculation of Propagation Through a Crystal
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to the placement of the next atom in the crystal, another indicator that the wave function for the
electron spreads throughout the entire crystal. As the energy is further increased we see a continuous
series of such patterns; one of the highest energy ones appears in Figure 20.3. Such a continuous
range of energies where electrons may propagate in a crystal is called an allowed band in solid state
physics. Note that for this state near the top of the band, the successive T,, now appear on nearly
opposite sides of the origin. This indicates that the phase going through successive —functions is
approaching —1.

As we continue to increase the energy we find the flow of Figure 20.4. The phases from successive
scatterers are now sufficiently close to —1 that the successive reflections in the crystal no longer
interfere sufficiently constructively to allow the electrons to propagate forward in the crystal. This
continues as we increase the energy through that of Figure 20.5. A range like this where no states
propagate through the crystal is known in solid state physics as a gap or band gap. Finally, Figure
20.6 shows that with a little more energy, we begin another band of energies where propagation
occurs. This alternation between bands and gaps continues as we increase the energy of the electrons.

5.3 Anderson Localization: Introduction of disorder

Once it is understood that in special bands of energy electrons may propagate through an infinite
crystal, it is natural to inquire as to what happens in a more realistic situation when there is
disorder in the crystal, for instance when the spacing between the atoms is slightly irregular with
small, random perturbations. Phil Anderson won the Nobel prize in 1977 for his investigations into
this very issue.

Our renormalization approach to crystal propagation makes such studies easy to carry out.
We now compute the renormalization flows according to (29) with a simple computer program
which generates slightly random displacements between the atoms and therefore slightly different
pp, for each n. Figures 21.1-21.6 show the renormalization flows of the transmission amplitude for
a random crystal (with atomic locations varying by £15%) at precisely corresponding energies to
those in Figure 20.

Figures 21.1,4,5 show the typical behavior in the gap. There is still a rapid approach to the
origin, although now the approach is a little random. The electrons still cannot propagate at these
energies in the gaps.

Figures 21.2,3,6 show that with disorder, even electrons in the allowed energy bands cannot
propagate in the crystal. The flows cycle around the origin as before, but all eventually spiral
into it. By studying how quickly these flows “fall” into the origin, one may determine the typical
maximum distance which an electron may travel in the crystal. These results show that all electrons
become localized in this random crystal, a phenomena known as Anderson localization.

The Anderson localization teaches us an important lesson about propagation in the crystal.
The classical result for the transmission probability through a crystal of scatterers is that the final
probability is the product of all of the probabilities of crossing the barriers. So long as the probability
of crossing each scatterer is not exactly one, classical thinking predicts that in an infinite crystal the
final transmission probability will be zero. What is different in the quantum analysis is that we now
must sum complex amplitudes over all histories. In this sum in perfect crystals, at those energies
in the allowed bands, there is enough constructive interference in the forward direction to allow the
propagation to continue. By introducing randomness into the crystal, we disturb this constructive
interference sufficiently to localize the electrons.

6 Scattering from Smooth Potentials: WKB approximation

We conclude with a beautifully simple derivation of a very famous approximation due to Wentzel,
Kramers and Brillouin for the form of the electronic wave function in a very smooth potential. The
basis for our approach is that a smooth potential may be well approximated as a series of very small
steps of width A, as Figure 22 shows. So long as we avoid regions such as b < 2 < ¢ where the step
heights become comparable to the difference between the the potential and total energies, then the
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reflection coefficients such as (14) and its forbidden analogue in Section 3.6 will be very small and
the stepped potential acts like the smooth potential which it is supposed to mimic.

Because the reflection amplitudes are small within these regions, we may ignore diagrams in-
volving reflections because they give negligible contributions to the final result. The entire Feynman
sum for the propagating wave function then reduces to a single diagram progressing to the right.
Figure 22 gives two such examples, one in a classically allowed region and the other in a classically
forbidden region.

Corresponding to the small reflection amplitudes, the transmission amplitudes across the steps
in allowed and forbidden regions are almost exactly one. These amplitudes are the ratio of the
geometric to the algebraic mean of the wave vectors or decay constants before and after each step,
\/klkz/(%(kl +k2)) and \/m/(%(al + ay)), respectively. So long as the step size is small, k; ~ ko
or a1 & g, these amplitudes approach unity. Because all of the transmission factors are nearly one,
we do not even need to list them explicitly in the amplitude for the history. The entire Feynman
sum for a smooth potential is thus approximated by a simple product of either propagating or
penetrating factors.

In the classically allowed case we then find for transmission between two points ¢; and ¢y the
following amplitude

T = pip2...Pn (30)
— eiklAeikgA . eikNA
e’i(k1A+k2A+...kNA)

. a2
i k(z)dz
— e ftn ,

where in the last step we have noted that in the limit of infinitely narrow steps, the exponent just
become the Riemann sum for the integral of k(z) = \/2m(E — V(z))/h. The classically forbidden

case follows a similar logic,

T = pips...pa (31)
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N 67 fql a(z)dz’
where a(z) = \/2m(V(z) — E)/h. The fact the wave progresses as an integral of the local wave
vector k(z) or decay constant a(z) is the heart of the WKB approximation.

The WKB approximation actually goes one step further, and it is easy for us to obtain the full
expression. The usual expression for the WKB approximation gives the value of the wave function
as a function of z. In our Feynman formulation the wave function in the region just after the
step at point g is the quantum amplitude at that point 7% (g) at point ¢ time the corresponding,
appropriately centered unit current,

o) = T etk(a)(z—q)
() =

Vhk(g)/m’

The wave of the wave function at the point & = ¢ is therefore

_pe__ L
Y(g)=T )

Combining this with (30) gives the value of the wave function in a smoothly varying classically

allowed region as
o [ k(@)de

k(q)

As we discussed in Section 3.6, the unit transmitted beam in forbidden regions is given by exp(—az)/sgrtiha/m.
Therefore in classically forbidden regions we find

$(@(g) o

N i
a(q)

These last two results are the complete WKB approximation derived as just the first Feynman
diagram in scattering theory!!!
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