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The problem of the simple harmonic oscillator, where a particle of ass m moves in the potential

V(z) = §mw2m2,
plays an important role in the understanding of a wide range of physical phenomena. Small oscilla-
tions of systems about their equilibrium configurations may be understood in the context of harmonic
motions.

Vibrations of diatomic molecules provide perhaps the simplest example of this. The potential
energy as a function of the distance R between two atoms in a diatomic molecule appears as in
Figure .

For small motions about the equilibrium separation R = R, (point of minimum energy), the
derivative of the potential V'(R,) is zero and the potential is harmonic to second order,

V(R) = V(R,)+ %V”(Ro)(R — Rimin)?

1
= V(Ro)+ 5’ (R— R,)",

Here we have defined w so that pw? = V'(R,) where y is the reduced mass of the diatomic molecule,
# = mymy/(my + ms). In the spectra of diatomic molecules one indeed finds the signature of a
harmonic oscillator with frequency given by the above formula. The vibrations of more complex
systems such as polyatomic molecules with hundreds of atoms or even solids with O(10%3) atoms,
may be decomposed into the oscillations of collections of independent simple harmonic oscillators.
The energy quanta of these mechanical vibrations are referred to as phonons.

The utility of the harmonic oscillator solutions goes beyond simple mechanical systems. As we
learned from Planck’s experience with cavity radiation, the oscillatory modes of electromagnetic
radiation may be described as harmonic oscillators. We have already called the energy quanta of
these oscillations photons. There are more esoteric examples as well. The tiny dipole moments in
a magnetic solid may be set into oscillatory motions. The energy quanta of these oscillations are
known as magnons. Finally, in particle physics, the processes by which particles are created and
destroyed may be described using the same mathematics which describes the addition or removal,
respectively, of energy quanta from a harmonic oscillator.
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In this set of notes, we will discuss the wavefunctions and eigenenergies of the simple harmonic
oscillator Hamiltonian,

(1)

This Hamiltonian gives rise to the following time independent Schrodinger equations, in the position
and momentum representations respectively,

h? mw?
- %Cﬁ‘/)(l’) = 2 (z) = By () (2)
2 ~ mw? 5 ~ ~
TR~ 0k = B (3

To find the eigenenergies and eigenstates of this system, we will proceed in three steps. First
in Section 1, we will perform a dimensional analysis on the TISE for this problem. As we will see,
dimensional analysis is a procedure by which many of the constants in an equation may be removed.
This helps both to simplify the algebra and to foster insight into the deeper structure behind the
equations. Next in Section 2, we will note that from the structure of the dimensionless TISE we can
guess the solutions by inspection! The form of the solutions which we find in Section 2 will then lead
us to a general form for the solution of the TISE for the SHO which will allow a full formal analysis
of the states of the Hamiltonian (1) in Section 3.

1 Dimensional Analysis

1.1 Motivation and General Idea

In the cgs system of units we have been using throughout this course, there are just three fundamental
dimensions, or types of physical quantities: distance L (measured in units of em), mass M (measured
in units of gm) and time T (measures in units of sec). Dimension refers to the type of physical
quantity being measured (distance, mass, time) and unit refers to the amount of that quantity which
we agree to call one one unit (1 em, 1 gm, 1 sec). Note that the cgs system has no basic dimension



of charge because the cgs unit of charge is defined as the amount of charge needed to produce a
unit, force between two objects at a unit distance and thus requires the introduction of no additional
dimension. The unit of charge in this system (the esu), on the other hand, does scale with the units
of the fundamental dimensions; if we changed the unit of distance then the amount of charge required
to produce a unit force at a unit distance would change.

The fundamental cgs units of 1 em, 1 gm, and 1 sec were chosen for historical reasons; we can
we can imagine different worlds in which all of the formulas of physics are the same but where
the numerical values which we insert for the experimental constants in our equations are different.
Rather than accept these historical dimensional units, we can take a more active role and make
our own judicious choice of units for each problem at hand, picking our own most convenient unit
distance, mass and time. For the purposed of this discussion we will name them 1 ud, 1 um and 1 ut
respectively, for one “unit distance,” one “unit mass,” and one “unit time,” respectively. These new
units correspond to some amount of the standard cgs units. Calling these amounts zg, mq and #g,
respectively, we have the conversions 1 ud = zg x 1 em, 1 um = mg x 1 gm, and 1 um = t3 x 1 sec.

Having moved to different units for the fundamental dimensions of length, mass and time, will we
also have different units for all compound, or derived, dimensions such as force (mass times length
times time™2) or energy (mass times length? times time™2). We arrive at the units of these physical
quantities through the familiar procedure of changing units. A table of examples of the conversion
procedure for the basic dimensions and some dimensions of other common physical quantities is
given in the table below.

| TABLE I: GENERAL DIMENSIONAL ANALYSIS |

| Physical Quantity | New Unit & Conversion to Traditional Unit |
Distance lud=129-1cem
Mass lum=mg -1 gm
Time 1 ut =tg-1 see
Frequency 1 radut=! =1 rad (to sec)™! =t5' - 1 rad sec™?
Momentum L umudut=1 = (mg gm)(zq em)(to sec)™! = mo—ﬂ“ -1 gmemsec™!
Angular Momentum | 1 umud?ut=!' =1 (mg gm)(zg em)?(tg sec)™! = m’f:g -1 gmem? sec™!
2
Energy T umud?ut=? =1 (mg gm)(zq cm)?(tg sec)™? = m:gx“ -1 gmem? sec™?

1.2 Application to the SHO: choice of “natural” units

Rather than working in units where mass in measured in gm, the most natural unit of mass for
the problem of the SHO (2) is to take the mass of the oscillating particle to be the unit mass for
the problem. Mathematically, 1 um = m, or equivalently mg = (m/1 gm) so that mg is just
the numerical value of the mass of the particle when measured in gm. Perhaps the most intuitive
unit of time for the problem would be the period of the oscillator. However, this choice leads to
a proliferation of factors of 27 in formulae. A more natural choice is the amount of time 1t takes
for the oscillator to move through 1 rad of phase, this will set the value of the angular frequency
within our unit system to be w = 1 rad ut~'. From the general conversions in TABLE I, we see that
1 rad ut=' = t5' -1 rad sec™!, and our choice thus sets the value t;' = (w/lradsec™!) so that
the inverse of the natural unit of time is the numerical value of the frequency of the oscillator when
measured in the traditional unit of 1 rad sec™!.

Having set um and wut, there remains one basic unit to fix, the unit distance. Their also remains
one final experimental constant remains in the TISE for the SHO, A. It is a general feature of
dimensional analysis that choosing units for three independent dimensions completely determines
the new system of units. In our case, the most convenient choice for the unit distance is one where

the numerical value of A is 1 umud?ut~'. This fixes 1 um ud? ut~' = h = mtufgl gm cm? sec™!
2 —1y, \1/2 2 -1 1/2 1/2
R/l gmem” sec to A/l gmem” sec .
so that zg = (( [1g — ) ) = ((m/(l/gmg)(w/l mdsec)_l)) = (T:—w) /(1 em), which sets
1 ud = ()",



With the units for the basic dimensions determined, we may now generate the basic units for all
physical quantities by inserting the choices we have made for the basic units, mg, ty and 2¢ in the
table above. The results of doing this we summarize in the table below. Note that the results are
always just the only combination of powers of m, w and h that have the appropriate dimensions.

| TABLE II: DIMENSIONAL ANALYSIS OF THE HARMONIC OSCILLATOR |
| Physical Quantity | New Unit & Conversion to Traditional Unit |

Distance 1 ud = (nzi—w)l/2
Mass lum=m
Time Lut =w!
Frequency lradut~l =w
Momentum 1 umudut=' = (hmm)u2
Angular Momentum 1T umud?sec™! =h
Energy 1 umud? sec™? = hw

In our new system of units m =1 um, w =1 ut~! and A = 1 umud? ut~"! and the TISE, in the
position and momentum representations respectively, reads

—%8§(\D(X)+%X2\II(X) = £Y(X) (4)
—I{Q\II(I{)—%@?(\II(I’) = EVY(K),

Here we adopt the notation that quantities measured in our new system of units always appear as
either capital or calligraphic letters.

The conversion from quantities expressed in the natural units for this problem and the standard
cgs units is straight forward using Table T1. For instance, the traditional value of energies £ will just
be the values we compute in our new units £ times the new unit of energy Aw. Thus an energy of
€ = 1/2 um ud? ut=? corresponds to an energy of E = hw/2. Tt is common practice to drop writing
our specialized units and write simply £ = 1/2 = E = 1/2hw. Similarly, a distance or position

X = 1 as measured in the new system corresponds to z = (r:—w)l/z in the traditional system.

With the relation between basic quantities defined, the relationship between functions may then
be determined by physical reasoning. For instance, the probability of finding the particle with a
position in the range with of traditional positions ' < z < 2’ + dz corresponds to finding the
position as measured in the new system in the range z'/zo < X < (2'+dz)/xo = (2'/z0) + (dz/z0),
thus | (2')|?dz = |¥(X'/zq)|*dz/zo. Hence, given ¥(X) in the new system we can always convert

it to a traditional ¢(z) through
1 x
P(x) = =Y (;0) : ()

2 Self-trasnform property of the states of the SHO

One of the benefits of performing the dimensional analysis is removing the clutter of the constants
from (2) and highlighting the striking similarity between the position and momentum representation
equations. If we rewrite the two equations in (4) using U as the dummy argument,

_%\IJ”(U)+%U2\II(U) = &yU)
—SV0) 4 LU(O) = E9(D).

we see that W and ¥ both solve precisely the same one dimensional Schrédinger’s equation with the
same eigenvalue ! Because there is at most one linearly independent solution for a given energy
for the TISE with finite potential in one dimension, we conclude that ¥ and ¥ must be the same



up to a proportionality constant, ¥ oc W. We know further that ¥ and W are related by the Fourier
transform,

U(X) = F{¥} = / %

™

XU (K.

Thus we need consider as possible solutions to the TISE for the SHO only those functions which (up

to an overall normalization factor) are their own Fourier transform.

1 e—X2/202
) . . . Vamo? '
learned in the notes on quantum states, the Fourier transform of this function is just another Gaus-

sian, f(K) = e=7"K*/2_ For these to be the same function, we must have f(U) = —L_~U*/(20%)

T Varo?
F(U) = ¢ 7'U"/2 50 that 1/0? = ¢2 and hence 02 = 1. (If ¢ = —1 the functions would be un-
normalizable.) Thus our first guess for a possible solution to (4) is ¥(X) = Ae=X*12. To verify
this, we insert our guess, or ansatz, into the TISE. It is convenient to first compute the appropriate
derivatives,

As we

The first such function which comes to mind in the Gaussian, f(z) = 7

Y(X) = X/
V(X) = (=X)eX'/?
V(X)) = (=14 X2 X2
So that,
”
EV(X) (;) —%\II”(X)Jr%XQ\II(X)
1 2

= E = —hw (traditional units) .
Indeed we have found a solution by simple inspection of the dimensionless TISE! (Note that there
was no need to carry the normalization factor A though our analysis because the TISE is a linear
equation and all of the factors of A cancel through.)

Recall that we found in our notes on the Heisenberg uncertainty principle that the absolute lower
bound which the HUP places on the ground state energy for a SHO is precisely this value of £ = %ﬁw.

The state we have found must therefore the ground state of the system,

1 _xa
Wo(X) = e/

Vo (K) = #6_,{2/2
(properly square-normalized).

This state does attain the absolute minimum energy allowed under the uncertainty principle and
thus also represents the state of minimum uncertainty. From our analysis we have thus also identified
the wavepacket of minimum uncertainty. It is the Gaussian wavepacket.

Having identified the ground state, we may generate other states from it using the observation
that taking successive derivatives of a function generates successive factors of ¢K in its Fourier
transform:

dK

U(X) = m\fl([()e”{x
= ¥(X) = dK (1K)¥(K)eEX,

V2T
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If f(X) = W)(X), then f(X) = —X 4 e~ X2 but also f([\") = iK —Lre=K*/21 Once again,
f(U) < f(U), and may have found yet another state,

2

Ty (X) = Xe X772,

To verify that we have indeed found another state, we first compute the derivatives of ¥y (X),

U(X) = Xe X772
V(X)) = (1-Xx%e X2
V(X)) = (=3X + X)X/
Inserting into the TISE,
? 1 1
EV(X) (;) —5\11”()()+§X2\II(X)

hw (traditional units) .

When properly normalized, this state is

V2 >
\IJl(X) = W‘XE_X /2.

Unfortunately, simply taking yet another derivative will not work. The basic properties of the
fourier transform tell us that if f(I/) = W}(U/) then f(U) = —U2¥(U), but we found above that
W/ (U) = (=1 + U?)¥(U). This is not proportional to U/2¥(I7) but has an additional term propor-
tional to 1 \il(U) One may develop a procedure to deal with this issue and find a method for finding
an algebraic solution for the TISE for the SHO which does not require the direct solution of any
differential equations.

For now, we will take as our main lesson , the strong suspicion that the eigenfunctions of the
SHO are of the form of polynomials times e‘X2/2, ¥, (X) = (Zi\;n anX”) e=X*/2 As we shall

see in the next section, this ansatz is correct. The polynomials which multiply the Gaussian factor

2 . . . . .
e=X"/2 are given a special name, the Hermite polynomials, and the symbol Hn(X). The solutions
to the Harmonic oscillator will turn out to be

U, (X) = At (X)e X712, (6)

where A, is an appropriate normalization factor.

3 Series solution for the states of the SHO

One way to derive the form for the Hermite polynomials H, () is to solve Schrodinger’s equation
using a power series method. Although this is not the most elegant method, 1t serves to illustrate
important features of the TISE. Tt is also important to understand this method because it may often
may be applied when a more clever solution is not so apparent.



3.1 The eigenvalue equation for the H,(X)

Although from our discussion in section (2) we would strongly suspect that the solutions for the
SHO are of the form (6), the considerations of that section alone did not rule out the possibility of
other solutions. One way to keep our search for solutions completely general but take advantage of
our 1nsights from the previous section is to write the wavefunction in the form of the product of a
Gaussian and an unknown function f(X), which we then expand in a Taylor series,

U(X) = (X)X

(i anX") e~ X712, (7)

n=0

We may then derive an alternate equation for the f(X). Because we expect the solutions for this
alternate equation to just be polynomials, the hope is that this new equation will be easier to solve
than the original Schrédinger equation (4.

It is important that when writing the form (7), we have not limited our search for solutions to the
TISE in any way. We see that this is so through the following argument. Given any wavefunction
¥(X) which is a solution to the TISE, we may always write it in the form (7) by simply defining
f(X) = \II(X)/e_Xz/Q. Written this way we see that f(X) may indeed be expanded in a power
series because it is the ratio (with non-zero denominator) of two well-behaved analytic functions,
¥(X) and e~ X712, (We know that ¥(X) is well-behaved and analytic because it is the solution to
the TISE with a potential which is finite with all derivatives continuous.)

To derive the equation for f(X), we first take the appropriate derivatives of ¥(X),

U(X) = f(X)e X1

V(X) = (f(X) - Xf(X)) e X/

V(X) = (f1(X) = 2XF(X) = f(X) + X7F(X)) e X2

Inserting the result into the TISE (4) then gives
—% (F"(X) = 2X f/(X) = f(X) + X?f(X)) e~ X7/2
+%X2f(X)e‘XZ/2 = gf(X)e—X2/2
LX)+ XX 4 LAX) = E4(X)
_%f//(X) +Xf/(X_) = (5 — %)nf(X), n==&— %

fI(X)=2Xf(X) = -2f(X) (8)

Equation (8) is now our equation for the function f(X), where we have defined a new parameter

describing the energy n = (£ — %) so that &€ =n+ % In terms of traditional units the eigenenergies

are

E =& =+ %)hw

Note that Eq. (8) is a new eigenvalue equation, one which determines the allowed f(X) which will
turn out to be the Hermite polynomials #,, (X).

To illustrate the use of this equation, we now use it to verify the results that we have already.
To see that that ¥(X) e=%%/2 {5 indeed a solution to the TISE and that the corresponding energy
is £ = %hw, we first identify that f(X) = 1 and then insert this into (8),

X)) = 2Xf(X) +2f(X) = 0
(0)—2X(0) +20(1) = 0
= n=20
1 1
= E:(n+§)hw:§hw (V)



For the first excited state we have f(X) = X, which we may also verify as a solution with energy
E = %hw by direct substitution,

FUX) = 2Xf1(X) + 2mf(X) =
0)—2X(1)+2n(X) =
n=1
1 3
E=(n+ i)hw = ihw (V).
Finally, we might 'guess’ at the solution for a new case and consider the next state which must

involve a quadratic term and a constant term to make up for the error in taking a pure quadratic
term. The correct form turns out to be f(X) = 2X? — 1, for then

=
=

F1(X) = 2Xf1(X) + 2mf(X) = 0
(4) — 2X (4X) + 2n(2X2 — 1) 0

= n=2

= E:(U-i—%)hw: ghw,

which we will find to represent the second excited state, ¥y (X) = ﬁ(?)@ - 1)6_X2/2 (properly

normalized).

3.2 The eigenvalue equation for the a,.

We now proceed to search for the general solution of the eigenvalue equation (8) in the form of power

series,
[ee]

F(X) =D anX™. (9)
n=0
After inserting this form into the eigenvalue equation for f(X), we will generate, not surprisingly,
an eigenvalue equation, for the a,,. This equation at last will be one which we may solve easily by
recursion.
As before, it is useful to take the appropriate derivatives before inserting the general form (9)
into the equation (8),

o

FX) = D axn (10)

n=0

F(x)y = > na,xn! (11)

8

(x)y = n(n —1)a, X"~ 2. (12)

3
1l
=)

The form we now have for the first derivative is particularly convenient because in (8) f’ appears
with a factor of X which will combine with the factor of X"~ in the series in (11 to produce a net
factor of X™ allowing us to combine terms in (8) easily. Unfortunately, the same is not true of the
above series for the second derivative. To put the second derivative term on the same footing with
the other terms in (8), we should shift the indexing of the sum by 2 so that the terms can combine.
This procedure is analogous to a change of variables when integrating,

[ee]
(X)) = Z m(m — 1)an X™™% ; change dummy summation index

m=0

m(m — 1)an X™™? ;m =0 and m = 1 terms are zero

NIE

f“(X) —

3
1l
)



o0

J1X) = Yo 2)(n DangaX”

n=0

We are ready to substitute the series expansion for f(X) into (8). Inserting (10,11,13) into (8),
we find

iletm=2+4n (13)

Z(n—{—?)(n—{—])an_{_an—QXZnanX"_1+2nZaan = 0
n=0 n=0 n=0
Z n+2)(n+ 1)ants — 2na, + 277an>X = 0 (14)

For the series to be identically zero, all of its terms must be zero separately and therefore we must
have

(n+2)(n+ l)ap4a — 2na, = -—2na,. (15)
This is the eigenvalue equation we expected for the a,. Because this equation describes a discrete
sequences of numbers (a,) rather that a continuous function (such as f(X)), it is known as a finite
difference eigenvalue equation.

3.3 Putting the pieces together

We now complete the series solution for the eigenvalue equation by solving (15) for the a,, recon-

structing the f(X) =3 a, X" and, finally, producing the wavefunctions ¥(X) = f(X)e -X3/2,
Equation (15) is solved by rewriting it as a linear recursion relation,
Nn —
Upys = Man (for all n) (16)

(n+2)(n+1)

Applying (16) recursively for n = 0,1,2,... in sequence, we find

as 21 ao
w = U=,
2(2 — 22(2 — n)(—
s = (4 . 377)‘72 ( 47'7)( M a4
2(3 — 22(3 = n)(1 —
a5 — (2 477) 0 (3 g)'( 4
2(4 — 23(4 —n)(2 — n)(—
as = (6.577) o ( 17)(6! (=),
2"(2m—2-n)2m—4—9)...(-n
aA2m ap
m!
272m—1—-n)2m—-3—-n)...(1—-1n)
A2m+1 ay

m!

Note that in this case, the even and odd terms form independent sequences so that we may write
f(X) as the sum of an even part agf.(X) and an odd part a; f,(X),

fX) = D a.xn

n



Z an X" + Z an X"

n €vVen nOdd
— Z aszQm + Z a2m+1X2m+1

m=0 m=0

-2 22(2 = n)(— 272m —2—-n)2m -4 —n)...(—

21 41 (2m)!

2(1—1n)) 5 2"(2m—1—n)2m—=3—mn).. . (1=n) Copmy
X X X

+a1< + 5 +o4 Gm 1) +

= (Igfe()() + (llfo()();

where f.(X) and f,(X) are even and odd functions of X respectively. Note that the functions f.(X)
and fo(X) may be generated according to the above formulas for any value of 5, the parameter
describing the energy.

At last our solution is ¥(X) = f(X)e_Xz/2 = (aofe(X) + a1f0(X))e_X2/9 = ao¥.(X) +
a1, (X). At this point is seems we have identified two linearly independent solutions, ¥, (X) (even)
and ¥, (X) (odd) for every (continuous) value of the energy parameter . We know that all of these
solutions which we have found cannot represent pure energy states of the SHO. First, all SHO states
are bound (V(£oo) — oo0) and bound states exhibit a discrete, not continuous, spectrum. Second,
we expect (in one dimension) only a single physical state for each allowed energy, but here we appear
to have found two. There must therefore be a physical reason for rejecting many of the solutions we
have found.

The physical reason for rejecting some of these solutions is clearly illustrated when we look at
the two solutions corresponding to the ground state of the harmonic oscillator, £ = %hw, or n = 0.
From the series solution we have

Ve(X) = fo(X)e X7 = agem X1
2 .2
W, (%) = (X)X = (g By 2O sy
2m(2m—1)(2m—3)...(1)X2m+1+ )F_X2/2
@m + 1)1 )e
= q X+1X3+LX5+...+;X2’”+1+... e~ X2,
3 5.2l 2m+ L)m!

A plot of these two functions is provided in Figure 3.3. While the even solution, ¥ (X), is well
behaved and decays into the forbidden regions at | X| > 1 while curving away from the x-axis,
the odd solution enters the forbidden region with too great of a slope and thus begins to grow
exponentially as X — zoco. As in the case of the square well, because this function is not be
normalizable, we reject it as unphysical.

We could have anticipated this behavior analytically with out resorting to a plot. The key
observation is that only when the series for f(X) “terminates” and the coefficients became zero after
some point leaving only a polynomial, then the wave function ¥(X) = f(X)e_X2/2 drops sufficiently
rapidly for large X that it is normalizable. If the series does not terminate, the function f(X) grows

2 . .
—X*/2 the wavefunction cannot be normalized.

so rapidly with X that even after multiplication by e
In the next subsection we will proof that this is so. For now, we will take this intuitively reasonable
result as given.

The form of the recursion (16) is such that the series terminates only for = n where n is
a nonnegative integer. If 7 is not an integer, then neither f.(X) nor f,(X) will terminate, and
neither the even or odd solution is normalizable or physical. Thus we see that  must be an integer.
Moreover, if 77 is an even (odd) integer, the series for f. (X) (fo(X)) will terminate at the point where
n = n but the series for f,(X) (f-(X)) will not terminate because f,(X) (f.(X)) contains terms
only for odd (even) n. If 5 is even (odd), the only allowable solution will be the finite polynomial

fe(X) (f-(X)). Up to an overall normalization constant, the Hermite polynomials are defined as

10



these terminated f.(X) and f,(X). Because (8) is a linear equation, it does not determine the
overall normalization of the Hermite polynomials. By convention, this normalization is set so that
the highest order term in H,(X) is 2" X"™. Using this definition and the recursion (16), we find the

following for the first few Hermite polynomials,

Col = Ho(X) =1
Ci1X = Hi(X) =2X
Os(1 —2X%) = Ho(X) =4X*-2
2
C3(X — §X3) = H3(X) =(8X”-12X)

Ca(1 —4X? + %X‘l) = Ha(X) =(16X*—48X? +12)

To sum up, we thus have,

|
3
o’

I

(n+%)ﬁw ;yn=0,1,... (17)
U (X) = AnHa(X)e X712 (18)

where, the A, are normalization constants defined so that [ |¥(X)|?dX = 1, which can be show to
leave them with the values,

A, = (2%nly/m) 12

Note that these solutions also obey the rule that the nt? excited state is even or odd according to
the value of n and has n nodes.

3.4 The growth of f(X) when the series does not terminate

In considering the physical admissibility of the solutions ¥(X) = f(X)e‘XQ/2 we first noted that
if f(X) is a finite polynomial that ¥(X) is normalizable because of the extremely rapid fall of the
Gaussian factor. We then assumed that if the series for f(X) did not terminate, that the resulting
f(X) would grow so rapidly that even the Gaussian decay of the factor e~ **/2 could not make U(X)
normalizable. In this subsection, we shall investigate why this should be the case.

The key observation which we shall exploit is that for large n the coefficients a,, in the sequence

defining f(X) behave much like the terms in the expansion for g(X) = eX” so that, for large X,

f(X) grows at least like EXZ, so that not even multiplication by the Gaussian decay factor e~ X’/2

11



will render the wave function normalizable. The basic similarity of the two expansions comes from
the behavior of the ratio of the (n 4+ 1)*" to the n'” terms in the sequence successive terms. For
fe(X) the ratio is

Aon X 27 don o 2(2n—2-1) _, X2
= X'=— 72X —3 —.
agn_Q‘XQH_Q A9on—2 271(271 — ]) n
For f,(X) the ratio approaches the same limit,
agn+1X2”+1 - a9n 41 9 2(271 —-1- 77) 9 X2
Ao 1 X221 7 g 4 - 2n(2n+1) n

We find precisely the same limit in the case of our auxiliary function, ¢(Y’). For

o0
_Y? _ 1 2n
n=0
the ratio is
Y2n
) y? y?
Yoo = T

(n—1)!

Note that the ratio of successive terms may be negative for small values of n so that the terms
in the series for the f(X) may alternate in sign. Because the ratio approaches a positive limit,
However, we are assured that for sufficiently large n, all terms will be of the same sign. Moreover,
because F°(X) — XTZ, we may find an N so that for all n > N the ratio of successive terms in

fe,0(X) will exceed Z/ZXT2 where 0 < v < 1 is any number between zero and one. This is important
because this is just the quantity (G%°(vX), which is the ratio of successive terms in g(vX). If we
now multiply g(v X) by a constant ay so that the N** term of a nyg(v X) is equal in magnitude to the
N term of f. ,(X), this implies that all successive terms in f. ,(X) will exceed their counterparts
in ayg(vX). Because all of the terms in question are of the same sign, the absolute value of the
sum of all remaining terms in f, ,(X) exceeds that of the associated terms in ayg(vX), which is
important because we know that g grows too fast to yield a normalizable function. To complete the
argument, let fy(X) be the sum of the first N terms in f(X) and gn(X) be the sum of the first N
terms in g(vX). Note that both fx(X) and gn(X) are finite polynomials. We have just shown that
for every 0 < v < 1 there exist a constant any > 0 and integer N such that for all X

IF(X) = In(X)] > anlg(vX) - gn(vX)]
= /(X)] > ang(vX) —an(lgn(vX)| + [fn(X)])
> OzNelIZX2 —PN(X),

where Py(X) is a function which grows at most as quickly as an N** order polynomial. If we
now consider the behavior of the wave function at large values of X, |[¥(X)| = |f(X)] le=X*/2| >
(oz;\re"EX2 — PN(X)>6_X2/2 —y e (37X (The limit of any polynomial times a Gaussian factor

1
99
as long as the series for f(X) does not terminate, we must have ¥(X) — oo as X — oo. This
completes the proof of our claim that we must reject all solutions of f(X) for which the series do

not terminate and culminates our power series analysis of the quantum states of the SHO.

is zero.) This statement is true of any 0 < v < 1. For this to be true for v > we see that,
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