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So far we have built the following items into our theory: quantum states and superposition, the
interpretation of the magnitude squared of quantum amplitudes as probabilities, both de Broglie
Hypothesis and the notion of quantum determinism.

As partial verification, out of our theory we have recovered the following new physical facts
which were not built directly into the theory, the Heisenberg uncertainty principle, the conservation
of probabilities and the correspondence principle (Ehrenfest’s theorem).

We now enter the next phase of the course where we will use our formalism to predict new
phenomena. To make these predictions, in principle all that one needs to know is the time dependent
Schrédinger equation (TDSE) describing how our quantum states change in time and how to use the
resulting wavefunctions to compute quantum probabilities and averages. All of the development you
will see throughout the rest of this course follows directly from the TDSE.

However, the TDSE is a complicated partial differential equation. While (as in Problem Set 6)
one may at times be able to “guess” at solutions to the Schrodinger equation, it is necessary to equip
ourselves with a set of general mathematical tools for solving the TDSE. The purpose of this note is
to give you the first tool in this arsenal, the method of separation of variables. With separation of
variables you will be able to eliminate the time dependence from the TDSE and produce a new, time
independent equation, the Time Independent Schrédinger Equation (TISE). For one dimensional
systems, the TISE will no longer be a partial differential equation but will be an ordinary differential
equation which is then much easier to solve.

After deriving the TISE, this note will go on to explore some of the general features of its
solutions. We do this before we move on in the course to discuss methods to solve the TISE in
specific instances. The first methods we will discuss for solving the TISE in one dimension will be
the qualitative methods laid out in Section 3.11 of the text, French and Taylor.

1 Separation of Variables
The time dependent Schrodinger equation in a three dimensional system reads

2
iho W (E,1) = qu(;z,t):_;—mv2xy(f,t)+x/(f)xy(f,t). (1)



For a one dimensional system it becomes just
N h?
ihd,¥(z,t) = HU(z,t)= —Q—agxlf(:c,t) + V(2)¥(z,1). (2)
m

As in the previous note, although we shall focus for the most part of this course on one dimensional
systems, we shall carry through the developments in this note for the more general case of three
dimensional systems which we will need when we study the hydrogen atom. To recover the one
dimensional results, you need only remove the vector symbol “°” and replace V with g, in all of the
equations below.

The method of the separation of variables 1s most often applied in the case of linear partial
differential equations. We would like to emphasize at this point that the TDSE is linear, which
means that the sum of any two solutions ¥y (#,¢) and Uy(Z,t) to the equation gives a third valid
solution U3(Z,t) = ¥y(Z,t) + ¥o(F,t). The student may verify this easily by direct substitution of
U3(Z,t) into (1).

Note that in the equations below we have written the wave function, ¥(#,?) as with an upper
case letter W. We do this because momentarily we will separate the time and spatial dependencies of
these equations and derive a new equation, the TISE, describing a time-independent wavefunction
(&) which we will denote with a lower case 1.

1.1 The separation procedure

To separate the spatial from time dependencies in the TDSE, we must assume that the potential
V(%) is constant in time. This will cover all of the cases of interest to us. It is valid for any isolated
system. If some external influence acts on the system then V' will have a time dependence, and more
sophisticated procedures must then be employed to solve the TDSE.

We begin the separation procedure by noting that (for those V' which are constant in time) all
of the operators on the left hand side of (1) involve only the time variable ¢ and none of the spatial
variables Z, whereas all of the operators on the right hand side involve the spatial variables & only.
The only appearance of spatial variables on the left hand side is as arguments to the wave function
and the only appearance of the time variable on right hand side is also as an argument to the wave
function. We could separate the dependencies in the equation entirely if we could only break up the
variable dependencies in ¥(Z,t). This observation leads us to seek solutions to (1) of the separated
form

U(E,t) = $(@)e(t) (3)

Substituting this ansatz (guess) into (1) gives

2
HU(E)6(1) = — 1T H(F0(0) + V(B EES0)

(T)ihd (1) = o(t) <—:—mv2¢(5)>+¢(t)v(f)¢(f)
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Finally, dividing both sides by W(Z,t) = ¢(Z)(t),

o) _ (- V()
o(t) 2m  Y(¥)

In (4), the variables are now completely separated. Nothing on the left hand side depends on the

th

) + V(&) (4)

spatial variables Z and nothing on the right hand side depends on the time variable ¢. Therefore,
if the left hand side is to equal the right hand side for all # and ¢, the two sides must both equal



something which depends on neither # nor t. If we call this constant, which is independent of # and
t, F,

_ 0oty (B V(@)
P=isse = (

2m (%)
we now have two separate equations, one for ¢

ihdro(t) = FEoé(t), (5)

)+

and one for (&),

D@ V@EE = ) (6)

(We chose the letter E for this constant because it will later turn out to be the energy of the quantum

state ¥(Z)o(t).)

(5) is a simple differential equation easily solved for the time dependent part ¢(t),

ihowp(t) = FEoé(t)
Ldo
ih %‘ﬁ = /Edt

ihlng = Et+C’
¢ = EC’/iﬁe—z’Et/h
o(t) = Ce PR, (7)

(6) is the Time Independent Scrédinger Equation for ¢ (Z). At this point we have identified a
whole series of solutions because generally there will be multiple values of the constant E for which
(6) has solutions for ¥(Z). To distinguish the different solutions, we shall refer to them as 1, (¥) and
call the corresponding values of E in (6) E,. It will be true for most of the systems we shall study
that the allowed values of F form a discrete set, as the notation F,, suggests. There are exceptions
where there is a continuous range of allowed values of E. All of the developments below will still
hold so long as summations over the discrete index n are replaced by appropriate integrations.

By the method of separation of variables, we have now identified a whole series of solutions to
the TDSE of the form

U, (1) = p(T)e Pt/ (8)

h? 4 o 4
g V@ + V@) = Ead(@). (9)
(We have absorbed the integration constant C from the solution to ¢(t) into the function (&), a
valid procedure because the TISE which (%) satisfies is linear and so multiplying ¢ (Z) by a constant
factor C' has no effect on its validity as a solution.)

1.2 Completeness of the solution set: energy eigenstates, general solution
to the TDSE

The intriguing thing about the solutions W,,(#,t) of the previous section is that they form a complete
set, which means that all valid solutions to (1) maybe made out of sums of the particular solutions
®,, we have identified. This is a general feature of the solutions generated by the procedure of
the separation of variables. The proof of this as a mathematical statement is beyond the scope of



this course. We can see, however, on physical grounds that the solutions we have identified must
be complete provided that we have the correct mathematical representation of our pure physical
quantum states.

The physical reason for our confidence in the completeness of our solutions comes from the very
special form of equation (9). Tt is just the eigenvalue equation for the energy operator!

—%v2¢n(f)+V(f)¢n(f) = Hip(%) = Entbn(d). (10)

The 1, are eigenstates of the Hamiltonian operator H. Each solution ¥n (Z) to this equation is a
pure state of the energy observable with energy F,. The only values which may be observed when
the measure the energy of the system are the F,, where (10) has a valid solution. This is the reason
for our choice of the name E for the constant which appeared in our separation of variables analysis.

The completeness of our solutions may be understood through the physical principle of super-
position, which states that we may write all quantum states at a given time ¢ = 0 as an amplitude-
weighted sum of the pure states of the physical observable of the energy,

[W(t=0)>=> eqlBn >. (11)

n

In the position representation, this means that we may expand any wavefunction ¥(#,¢ = 0) at time
t = 0 in terms of our solutions to the TISE 1, (%),

U(Ft=0)=_ catin(F). (12)

n

From our separation of variables, we do know that wn(f)e_iE"t/ﬁ is a solution to the Time

Dependent Schrodinger Equation (1). Because the TDSE is linear, >, cnwn(f)e_iE"t‘/ﬁ is also a
solution. Because, as we saw above, the ¢, may be chosen so that " ¢,1, (£) matches an arbitrary
W(Z,t =0) at t = 0, the general solution to the TDSE may be written

U(T,t) = entha(Z)e PP, (13)

kel

The interested student should note (and try as an exercise) that one may go (in three or four
lines of algebra!) from the more abstract Schrodinger equation

ihO[W(t) >= Hop|U(t) >

and the principle of superposition (11) to derive almost immediately the central result of this note

(13).

2 Properties of Solutions of the TISE

While the TISE does represent a significant simplification over the full-blown TDSE, the TISE is
itself a formidable equation. We have paid a price in the elimination in the time dependence from
the equation describing W(#,¢). That price is the introduction of the unknown parameters E,,, the
allowed “eigenenergies” of the system. While before we had a partial differential equation with an
extra variable ¢, at least we knew at the start the values of all of the constants appearing in the
TDSE (1). This is no longer the case with the TISE. We must somehow determine the values F,,.
Before discussing methods for determining the allowed En and finding the solutions of the TISE;,
we will now discuss what we may say in general about these solutions. The first two facts we will
discuss are general mathematical properties of the F, the 1, respectively. The second second two
facts are more physical and give us insight into the allowed energies of a system, the F,.



2.1 Realness of the eigenenergies F,

While from their physical interpretation as the eigenvalues of a physical operator (10) and thus values
observed in physical measurements, it is clear on physical grounds that the energy eigenvalues E,
must be real. Nonetheless, it is as useful exercise and a simple consistency check on our theory to
verify mathematically that the eigenvalues of (10) are real. The mathematical proof follows directly
from the Hermitianness of the energy operator H. The proof we give below is completely general
and and may be applied to any Hermitian operator.

(6, HYp) = (Hn,tbn) ; Hermitianness of H
(Y, Entbn) = (Entn, ) ; Def. of eigenvalue
En(Yn,¥n) = E;(¢¥n,¥n) ; Linearity properties of Hermitian inner product
E, = E; ;(¥n,¥s) # 0 unless ¢, = 0.
= FE, isreal. (14)

2.2 Orthogonality of the eigenstates ,(7) (Kronecker §-function)

A useful property of the energy eigenstates i, (£) is that they are orthogonal, the inner product
between the pure states associated with two different energies is always zero, (¥n, ¥m) = 0. Again
the proof we give is completely general and is valid for any Hermitian operator.

(¥n, H) = (Hton,tbm) ; Hermitianness of H
(Yn, Emt¥m) = (Entn,¥m) ; Def. of eigenvalue
Em(Yn,¥m) = E(¥Yn,¥m) ; Linearity properties of Hermitian inner product
Em(¥n,¥m) = FEn(¥n,¥m) ;realness of eigenvalues of Hermitian operator
(B — Ba)(tn, ) = 0
= (Un,¥m) = 0 if En# Em. (15)

If we agree to normalize our eigenstates properly so that 1 = [P, (Z) d®z = [[[v}(Z)¢n(F) &’z =
(t¥n, ¥n), we then may write compactly

(¢n; wm) = 5nma (16)
where 0, 1s the Kronecker §-function, which is defined as
1 n=m

5nm:{0 ntm (17)

With this understood, the determination of the constants ¢, in the general expansion ®(Z) =
> s (Z) is now simple. To extract ¢,,, we just take the inner product of 1, with ®,

(Ym, ®) = (Ym, Z(’Mpn)

n

= Z ¢n(¥Ym,¥n) ; linearity property of the Hermitian inner product

n

= Z Cnlnm

n

=>cm = (Ym,P). (18)
(19)

With the ¢, we now may compute the probabilities of measuring the value F,, in an experiment,
P, = |en|?. We may also use them to give an explicit form for the expansion of an arbitrary state
® in terms of the pure energy states ¢,

OF) = Y dm(E)(Ym, P) (20)



2.3 Variational Principle

We now move to more physical statements about the behavior of the solutions of the TISE. The first
of these is the variational principle.

In its simplest form, the variational principle is the mathematical expression of the physically
sensible statement that the average energy observed for a system in any quantum state must be
at least as large as the lowest energy state (ground state) of the system, Ey. Despite its apparent
simplicity, this principle is extremely powerful and forms the basis for the vast majority of large
scale quantum calculations carried out in current research.

To express this principle mathematically, we begin with an arbitrary, not necessarily normalized
wavefunction, ®(#). To compute the average energy of the state described by ®(Z) we must first
normalize ® by dividing by the square root of the inner product of ® with itself, %. This
function is now properly normalized

P P 1 1

From the properly normalized state, we may compute the average energy,

(

@ . 1 . :
it @ 1 (@, H®)

V(@ @) \/(<1>,<1>)) - ' (@, Ho) = 12—

( \/(<I),<I>) \/(q>,<1>) ((I)’(I)) .

The quotient
(21)

has a special name and is known as the Rayleigh quotient.

The variational principle states that the Rayleigh quotient is never be less than the ground state
energy. Because the Rayleigh quotient takes on the value of the ground state energy when @ is
the ground state, the mathematical expression of the variational principle is the statement that the
function R[®] has its minimum at the ground state energy,

. . (P, H®
rrgn']?,[q)] = rrgnﬁ = Eq.

We shall prove an even more general version of this statement. The minimum of a function is
just a special case of a critical or stationary point. A stationary point, like the minimum, is an
input value in the domain of a function where all of the first derivatives of a function are zero. This
means that if we move slightly away from a critical point, the value of the function changes only
slightly and varies only to second order in the distance from the critical point. We refer to the nearly

constant behavior of a function near a critical point by saying that the function is stationary about
the critical points. We will now show that the variational principle:

Variational Principle: the Rayleigh quotient R[®] is stationary about all of the eigenstates ® = 1hy,.

Phrased in this more general way, the variation principle may be used to help identify ezcited
as well as ground states. We will see an example of how this principle may be used in the next
section where we use it to prove an extremely general version of the virial theorem.

To prove the stationary property of the Rayleigh quotient, imagine that we are in the vicinity
of one of the eigenstates 1, so that ® = 1, + ¢, where ¢ is relatively small. Using (20) we may
decompose ¢ = > ¢, where because ¢ is small, the ¢, will be small also. To prove that R[®]
is stationary about ¢, we now just have to show that the Rayleigh quotient is nearly constant,

Rltbn + >, em¥m] = En to first order in the c,.



We proceed by first expanding the denominator and then the numerator of R[®], both to second
order in the ¢,. The expansion of the denominator is

<¢n+23m¢m,¢n+2q¢1) = wn;wn ‘|‘ch ¢m¢l ‘|‘Z wrmwn +ZC ¥ wmawl)
m l
= 51111 ‘I‘ch nl‘l‘ZCm(smn‘l'Zcmcl ml
l m ml
= 1+cn+cfl+ch*cl
l

= (I+eatc)+ Y lal’
l

The expansion of the numerator is quite similar,

(wn + Zcmwm; I:I(wn —+ ZI:C”/)L)) (wn —+ Zcmwm; Enwn + Xl:clEll/)l)

= En(wn; lpn) + Z Elcl(l/)n; wl) + Z Enc:n,(wﬂu 1/)71) + Z ElC:nCl(TPma ¢l)
mil

= E,b0un —{—ZE[C[(SM —{—ZE C Omn —{—ZE[C c10mi

mi

= E,+ FEqey +Encn +ZElcl Cl
l

= E(l+ecntep)+ ZE1|01|2
i

Finally, we combine our two results
(cb, ﬁf@)
(@, ®)

En(l4enten)+ 5 F
(T4 en + ) + 2 el

En 420 Fi 1+|cc:l|+c
L+ 1+|czl+c*

E, E .
= M + 0(03) (correct to second order in the ¢’s)

1430 al?
:<m+ZEwﬁO—Zmﬂ+wﬁ
l {
= E,+ ZE,|CI|2 — Eq Z lat]* + O(c?)

= E +ZE1 |Cl| +0( )

R[®] =

Here we have kept our expression correct up to and including second order terms in the c¢’s,
lumping all third and higher order terms together in O(c?). We see that there are no correction
terms first order in the ¢’s. R[®] is therefore stationary about the value F,,, which is what we had
wanted to prove. Moreover, we immediately see that £, — E,, > 0 if n = 0 is the ground state,
and thus the corrections are always positive near the ground state. Thus we also see that R[] is a
minimum about the ground state as promised.



2.4 Virial Theorem

Aside from its value in computer calculations, the variational principle is a very powerful theoretical
tool. It allows us to prove an extremely general result, the Virial theorem, regarding the averages
of the various terms in the energies for systems in pure energy states. In its most general form, the
Virial theorem is true even for systems containing of many particles such as macroscopic objects.

The virial theorem states that if the potential energy function V(Zy,..., Zy) of a system of N
particles is a homogeneous function of order v of the coordinates,

VAZL, .., AEN) = NV (T, .0, N),

then for each and every pure state n of the total energy operator H of energy E, the average kinetic
energy < 1" >, and average potential energy < V >, of the system must obey

fr——— En = <T>n+<v>n
2+ v
= 2 <V>, (23)
2
- s, (24)
v

Examples we have see so far of this are the simple harmonic oscillator V() = %mw2x2 = v =2,
the Hydrogen atom V(r) = e?/r = v = —1, and the bouncing ball V(z) = mgz = v = 1. We
have also touched on a multiple particle system which fits into this framework as well, the multiple
electron atom. In fact, any system composed of electrons and nuclei, such as yourself, satisfies the
conditions of the virial theorem. By far the most important force in systems composed of electrons
and nuclei is the electrostatic force. In the case of a single atom, if R is the position of the nucleus
of charge Z and {a’c}}izzl are the positions of the Z electrons, then we have N = Z + 1 particles and

5 = 4\ _ =N _ze? o2 . . .
V(R,Z1,...,Z2) =Y i, Fos +2 i Fs- In this case and cases with more than one nuclei, V
is still a homogeneous function of order v = —1.

In all of these cases, the virial theorem allows us to make ezact quantum mechanical statements

about the pure energy states of systems,

1
<T>p=—2 <V >y, (Hydrogen Atom/Multiple Electron Atom/You)

2
<T >,=<V >, (Simple Harmonic Oscillator)
<T>,= % <V>,. (Bouncing Ball).

2.4.1 Preview of multiple particle systems

The formal part of this course deals almost exclusively with systems of one particle. While we have
not yet discussed all the the physics of multiple particle systems, the general considerations we have
laid out so far are sufficient for us to formulate and give a valid proof the virial theorem in the
general case of more than one particle.

Within our framework, a systems of N particles is described by the coordinates of the particles
in the system {Z;}7_,. Measurements of the positions of the particles in the system will lead to
a distribution of results, where some probability function P(Z1, ..., £n) d®z1..d%zn describes the
probability of finding a particle in the small volume d®z; around #; and another particle in the volume
d3x4 about &3 and so forth for all of N particles in the system. For a given quantum state |¥ > of the
system, this probability is given by the square of a quantum probability amplitude P (&1, ..., Zn) =
th

|U(Z1,...,Zn)|?. The wavefunction of the n'" pure state of energy will be an eigenstate of the

Hamiltonian (total energy) operator,

HWo(F1, .., N) = EnUn (1, ..., Tn), (25)



where the Hamiltonian H is the sum of the total kinetic and potential energy operators,

N ﬁ? .
H = Zm + V(&1 ..., EN)
i=1
N h2
= Z <_2 v2> + V(fla a'i:N)
i=1 mi

There is only one other fact about multiple particle systems, the Pauli Exzclusion Principle, which
puts additional constraints on the W(Z1,...,Zn) beyond those imposed by the Time Independent
Schrédinger Equation (25). We will discuss this principle in a later note. All that we will need for
now to demonstrate the virial theorem is the knowledge that ¥ satisfies condition (25).

2.4.2 Proof

With the variational principle and the multiple particle Schrodinger equation in hand, the mathemat-
ics of the proof of the virial theorem is straight forward. Our proof will be based on the observation
from the variational principle that if we “dilate” one of the eigenstates taking ®(71,...,Zn) =
Pn(AZ1, ..., ZN) then E(A) = R[®x] = (P, HP))/ (P, D)) is stationary about the value A = 1
(‘iE(d# = 0) because here ®,-; is just the eigenstate 1, (1, ..., Zn). To prove the virial theorem
we now evaluate E(A) and set E/(A=1) = 0.

First, we evaluate the denominator of R[®,],

((I))\,(I))\) = /dsxl /d $N|<I>)\ 171,..., )|
/d3I1 /dSIN |¢n()\fl,,AfEN)|2

d3u d3u - - -
/Tl/ N|¢n( .,u,N)|2 Dl = AT

= A SN/d?’ /d un ¢ (i1, ..., dn)|?

= >‘_3N ¢n,¢n)
= A3V (26)

Next we break the numerator into potential and kinetic parts,
(Dr, HDy) = (05, T+ V®,) = (B, 7)) + (D5, VDy).

The potential part gives,
(®y,®)) = /d3z1.../d3mN|<I>,\(a':‘1,...,fN)|2V(5:‘1,...,fN)
= /dSml.../deN [Un (AZ1, .., AEN) 2V (1, .., )
/di’n-,;1 /d3a:N|¢n O AEN)POATUNY V(& ., EN)
= /d3 /d%an(Axl,...,A EN) AV (71, ., EN)
= A‘”/d%l .../dSa:N|¢n(A5§1,...,)\a?N)|2V()\aB‘1,...,A5:‘N)

dPuy d? dun

= )\_U_?’N/d?’ul,.../d?’uN |1pn(171,...,ﬁN)|2V(171,...,ﬁN)



— /\—'U—SN(wn’ "‘/wn)
AN v s, (27)

We now finish with the kinetic energy part which is a bit more difficult because of the differential
form of the kinetic energy operator.

2
(@)\,T@A) = /dsl‘l.../dsﬁj\r ¢n()\fl,---,)\fN)* [Z <—2f;n> v25i ¢n(/\fl; .,)\i;N)
h2
— /d%l.../d%N Un(AZ1, ..., \EN)* Z (- 2mi> V25, | Yn(AZ1, ..., AZN)

dBuy Buy h?

2 — — 2 — — — -
= A b / Twn(ul, ...,U,N)"< ZZ: <_2ml) Y% q; wn(ul; ;“N) y U = AZ;
= AWN(y,, Toy,)

= AN TS, (28)

Putting (26-28) together we have,

(@x, H®))  (®x,T®)) + (02, VO)) AN < T 4A703N <7 5
(@5, @) (@x, @) B A=3N
= N<T>, AV <V >, .

E(A) =

As discussed above, this F(A) must be stationary about A =1,

0 = E'(A:])
= (2A<T >, =A<V >,
= 2<T >, —v<V>,.

A=1

From this follows directly the general virial theorem for systems with homogeneous potential inter-
actions V(AZq, ..., AZn) = A"V (&1, ..., ZN),

v
<T>n:§<v>n. (29)
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