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Lecture Notes for de Broglie Waves

1 The Experimental Observation

From the Davisson-Germer, G.P. Thomson and other experiments, we learn empirically that the
particles detected in experiments exhibit wave-like diffraction and interference effects with a wave-
length A given by

where p (= V2mE) is the magnitude of the momentum of the particles in the experiment and h is
a constant with the experimental value h = 6.63 x 10~27erg s, precisely the same Planck’s constant
from the black body radiation formula. For the moment we leave the fact that this constant is the
same for all particles, including photons, as an experimental fact.

2 The Correspondence Principle

We can not ignore the the wide range of physical phenomena which classical physics describes
well. The correspondence principle emphasizes these successes. The correspondence principle is
the recognition that any valid theory must be able to describe the phenomena of classical physics
which we experience every day. Using this simple principle, one can impose surprisingly strong
constraints and conditions on our new, more fundamental, quantum theory. This procedure ensures
that quantum theory is consistent with the empirical observations of classical physics.

The particular phenomena with which we shall impose consistency in this set of notes is the fact
that, as J.J. Thomson’s observed, the electrons in cathode-ray tube experiments follow trajectories
governed by Newton’s law, F' = ma. The fact that electrons follow Newtonian trajectories must be
reconciled with the fact that they exhibit wave behavior with a wavelength given by (1) above.

3 Wave Packets

The notion of a particle following a Newtonian trajectory involves the concept of of a localized
object following a well defined path in space. This notion is not unfamiliar in the theory of waves.
It corresponds to the wave theory notion of a wave packet. In wave theory the superposition of
a packet or group of waves waves with slightly different wavelengths can produce a wave which is
localized in space. With an appropriate combination, the center of the group of waves will travel
with an average overall velocity known as the group velocity. The two descriptions can be reconciled
and will correspond provided that the group velocity ¢, in the wave description and the particle
velocity v along the Newtonian trajectory description can be made to always agree!
As an example of a wave packet, consider the combination of two waves

T, = ei(i—’lra:727ru1t)

and
T, = ei(i—;’w—%n@t)



Defining the phases
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we analyze the superposition of these waves as
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where |A|? = |1+ e®2 = 2(1 + cos A) and tan@ = sin A/(1 + cos A). If the waves ¥; and ¥, are
close in frequency, we see that the new wave ¥, looks much like the original waves e!®* ~ €2 but
for a phase shift # and a modulation in amplitude A. (See figures below.)
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Note that the modulation in amplitude A = 1/2(1 + cos(A)) = \/2(1 + cos 2m(AL z — Avt)),

tends to localize the wave group ¥y, into regions which travel at a velocity ¢, given by A% r—Avt =

const = ¢, = i—f = %_%. We did not achieve perfect localization with this wave “group” of two
A

waves because we used so few waves. In general, the more waves that make up the group, the better
it can be localized. When dealing with waves, there is generally a relationship between the frequency
and wavelength of the waves v = f(%) This is known as the dispersion relationship and is a a basic
property of each type of wave we encounter. Although here we only used two waves in our group,
one can give a similar argument in the general case to show that even when combining many waves,
as long as their frequencies and wavelengths fall in a narrow interval so that Av, A% — 0, then
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which you may also see sometime written
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4 Hamilton’s equation

To achieve correspondence between the two descriptions, we would now like to insist that the group
velocity given by ¢, = (,%— equal the Newtonian particle velocity v. (c¢y +— v.) We also have from
A

the experiments the empirical observation (1) that % +— p/h. Substituting these correspondences
in (4) leaves
h ?
v = O _ Ohv _ @, (5)
op/h  Op  Op

which relates the velocity of a particle on a Newtonian trajectory to the derivative of some as
yet unspecified Newtonian quantity ([?]) with respect to the particle’s momentum. To complete
the correspondence, we must identify a derivative relationship like this from classical Newtonian
mechanics. Such a relation is well known in advanced mechanics and is known as one of the two
canonical equations of motion of Hamilton.

To derive the relationship we need, we use only the basic concepts of the conservation of momen-
tum and of energy. Conservation of momentum tells us that if we apply an external force F®¢ to a
particle in motion along a trajectory, then the momentum of the particle must change according to

9 p(t) = o= (6)

As the momentum of the particle changes, so will its energy. In this derivation, it is useful for
us to write the energy of a particle as a function of its momentum, rather than the more familiar
procedure of writing the energy as a function of the velocity of the particle. This form is generally
more useful because it relates two conserved quantities. Writing the energy this way is so useful,
in fact, that this form is given a special name in honor of Hamilton. It is called the “Hamiltonian”
and by convention is written with the letter H, E = H(p). In this argument, we will leave H(p)
arbitrary. It may take the usual form used in classical mechanics,

1) = L (= Jm?). @
or the relativistic form we used when studying Compton scattering
H(p) = v/(me*)? + (cp)?, (8)
or the energy-momentum relationship for a photon
H(p) = cp, (9)

or some other mysterious form we have not yet encountered.

With the energy written in this special way, the energy of our particle will vary with the mo-
mentum p(t) through the relationship E = H(p(t)). The energy of the particle thus changes at the
rate

dE _ 9H(p) dp(t) _ OH(p)
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where we have used Eq. (6) to relate the force and the rate of change of the momentum. Applying
the law of the conservation of energy, this rate of change of energy of the particle along its trajectory
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must also must be the rate at which the external force F°®* does work on the particle, dd—vf = [eaty,
We thus have AW dE 0H(p)
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As so we conclude that, in general
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This is easily verified in the cases above. For the classical particle (7),
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For the photon (9)
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The relativistic case (8) involves a bit more work, but the relation
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may be solved for p in terms of v to give the more familiar
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5 Completing the correspondence

We now have both the group velocity ¢, and the Newtonian velocity v in terms of partial derivatives
and so can complete the correspondence. Comparing (5) and (11) we must have

E +— hy,

which is the second de Broglie relation mapping energies to frequencies. Gathering the two de
Broglie relations together,

E +— hv
p +— h/A (12)

6 Discussion

Note that it is a quite natural consequence of the correspondence principle that precisely the same
constant appears in both the momentum-wavelength and energy-frequency de Broglie relations (12).
Although these relations related two different pairs of physical quantities, only one, and not two,
fundamental constants are involved. Ultimately, the equality of these constants results from our
definition of work as force times distance. If physicists had happened to decide to define work as
two times the value of force times distance (so that we could write the kinetic energy of a particle
as mv? instead of %va), then the two constants appearing in the de Broglie relations would be
different, but by precisely the same factor of two.

It is also interesting to ponder the question of why the same value of Planck’s constant should
apply for photons as well as for every single kind of particle. This also comes about as a consequence
of conservation laws. To link the value of Planck’s constant for two different types of particles,
we must consider a situation where two unlike particles interact as for example in the electron-
photon collision in Compton Scattering. A full discussion of how to describe with waves a system
containing more than one particle is beyond the scope of the course at this stage. We can, however,
give a plausibility argument for the one fact which we need from a more advanced multiple particle
description. To combine the energy of two particles (say when they are far enough apart that they
are no longer interacting), we know that we simply add the energies of the two separate particles.
As we have just seen, energy and frequency are related in direct proportion. So, it is plausible that
when combining the waves describing these two particles the frequencies will add as well. If we
accept this idea as plausible, we see that for energy E; + Es = hiv; + hovs and frequency vy + vg
both to be conserved simultaneously in all collisions exchanging energy/frequency between the two
particles, the particles must share the same value for Planck’s constant hy = hs = h.



