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Figure 1: A potential with no bound states

1 Introduction

So far, we have dealt with bound states, those stationary states where a particle has vanishing
probability of being found at infinite distance. As we noted in our analysis of the square well, not
all stationary states in a potential are bound. The potential in Figure 1, for instance, has no bound
states. For any E > 0, the particle has enough energy to exist classically at infinitely large distances
to the left. The wave function in this region will be of the simple, non-decaying oscillatory form
associated with classically allowed regions. The particle is not “bound” to any finite region about
x = 0. A complete understanding of quantum mechanics must include dealing with such unbound
states. Such states are referred to as scattering states and are the subject of this set of lecture notes.

The solutions of the TISE answer two very important questions about a system. First, they
determine the values which will be found in measurements of the energy of a system. Second, the
time evolution of the state of a system may be written as a superposition of solutions to the TISE
with the appropriate time dependent phases attached. For scattering states, the question of the
allowed energies has a simple answer. In Section 3.2, we discuss how all values of energy in the
scattering range of the spectrum are allowed. We will then proceed to spend most of our effort
addressing the issue of the time evolution of the scattering states of the system.

Because we are no longer dealing with bound states, the time evolution of a system is no longer
restricted to a probability distribution which sloshes back and forth in a confined region of space. In
Figure 2 we show an example of the typical time evolution of scattering states. The figure shows the
time evolution of the spatial probability distribution of finding a particle subjected to the potential
of Figure 1. These distributions were determined by numerical integration of the Time Dependent
Schrodinger Equation.

The figure shows that repeated measurements of the position of the particle at time ¢t = 0 yield
a Gaussian distribution centered to the left of the origin z = 0. The initial state of the particle has
a non-zero average velocity in the +z direction. At time ¢ = 1, the center of the distribution has
shifted to the right. During the intervening interval the distribution has spread in accordance with
the Heisenberg Uncertainty Principle.

As time progress to t = 2, the center of the packet has reached the step. This time we shall
refer to as t., the time of the collision. At time ¢ = 3, after the collision, the particle is no longer
likely to be found at the step, and the probability distribution now takes on two peaks, one to the
left and one to the right of the step. As time progresses from ¢t = 3 to ¢t = 4 , the final behavior of
the probability distribution is evident. The two peaks in the distribution now move away from the
step, spreading in accordance with the HUP.

In interpreting these results, it is important to keep in mind that the particle has not split into
two parts which then move either to the left or right, it is merely the probability distribution which
has split. Repeated experiments will show that after the collision at ¢ = t., the entire particle
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Figure 2: Example of time evolution of a particle approaching a potential step
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Figure 3: Potential and total energy for a free particle

randomly either continues forward (is transmitted by the step) or reverses course and returns along
their original path (is “reflected” by the step). The probability of reflection or transmission is in
direct proportion to the areas of the two peaks moving away from the step after the collision.

There are two more subtle effects of interest which we may study. There may be a delay of the
scattered packets in the region of the step before they emerge. This delay if often supposed in science
fiction stories to be zero during quantum tunneling events, thus allowing faster than light travel. It
is also possible that the interaction with the step induces an additional spreading in the reflected
and transmitted packets above and beyond what we normally expect for a packet propagating in
free space. We will study this effect as well.

We will begin our discussion in in Section 2 with a full discussion of the simplest class of scattering
states, particles propagating in free space (V(z) = 0). Although, the solution in this case is the
familiar spreading wave packet, we will take a fresh look at the problem. In Section 3 we will develop
the general theory of scattering, and finally, in Section 4 we will apply our general theory to the
specific the problem of scattering from the potential step in Figure 1.

2 Propagation of a Wave Packet in Free Space

2.1 Solutions to the Time Independent Schrédinger Equation (TISE)

In the case of a free particle (V(z) = 0, Figure 3), energies E < 0 correspond to solutions everywhere
classically forbidden. Such solutions will grow exponentially either as x = —o0 or x — 0o and place
ever-growing probabilistic weight of finding the particle at infinite distances. Such wave functions
do not correspond to probability distributions and thus do not describe physically allowed states.
We reject them.

For E > 0, on the other hand, the entire space becomes classically allowed, and we find two
linearly independent solutions of the form

br(z) = Aet*® (1)

where k may take either value k = £/ 2mE/h2, and A is a normalization constant. These states
we recognize as physical; they are the pure states of momentum p = hk.

2.2 Normalization of the solutions

Because the ¢ (z) are pure states with respect to momentum, we expect to find find complete
uncertainty in position. Indeed, the probability distribution associated with these functions is



constant in space,
P(z) = |¢r(2)]* = AP (2)

Strictly speaking, in an infinite space, these functions are not normalizable,

/ P(z)dz = |A|2/ dz — oo.

However, this form of unnormalizability is much milder than that of the exponentially growing wave
functions and is manageable. We may imagine placing our experiment in an extremely large box
of size L. For sufficiently large L (several billion light years, for instance), we do not expect such a
box to affect the small scale physics we study in quantum mechanics. And, as long as L is finite,
the states ¢y (x) will be normalizable. We thus accept our plane wave solutions ¢(z) as physical,
realizing that they are an idealization in much the same way as is the idea of a an infinite straight
line.

Although we cannot insist on the normalization condition [ |¢|? dz = 1, it is still useful at times
to have a normalization convention for such states. We will discuss such a convention when we turn
to our general discussion of scattering in 3.

2.3 Allowed energies

In contrast to the case of bound states, scattering states naturally remain finite at large distances
without the imposition of boundary condition constraints. The TISE, being a second order differ-
ential equation then produces two physical solutions for each value of £ > 0. This stands in stark
contrast to the always non-degenerate solutions of bound states in one dimension.

2.4 Physical Interpretation of the Solutions to the TISE

The spatial probability distributions P(x) associated with the ¢ (x) are uniform and constant. Yet,
we associate these states with particular values of momentum. It is the probability current,

i) = LS {u @)@}

which shows the flow of particles associated with these states.
Evaluating the current for the ¢y (x) gives
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In the last line, we have used the fact that the probability density of this state is |A|? and identified
v = hk/m = p/m, the velocity which we would classically expect to be associated with a particle
of mass m traveling with momentum #k.

The form (3) for j(z) gives a clear physical interpretation for the ¢ (x). The represent constant
beams of particles of density P traveling at velocity v.. It is important to keep in mind that the
simple result (3) does not hold in general except for wave functions of the simple plane wave form
Aet*®. Nonetheless, (3) is a good mnemonic for remembering an expression which we will use time
and time again in scattering theory.
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Figure 4: Integrand of an integral to be analyzed using the method of stationary phase

2.5 Wave packets

The direct connection between the physical interpretation of ¢ (z) as a beam of particles and our
formal theory comes through the TDSE. The pure states ¢y (x) of energy are stationary, and the
connection between them and the dynamical evolution pictured in Figure 2 is not direct. Producing
a wave packet with an identifiable location in space requires taking superpositions of the states
or ().

Mathematically, a wave packet evolving under the TDSE is such a superposition of pure energy
states times multiplied with the appropriate time-dependent phase factors,

Wat) = [ dmee (@

where |)(k)| is sharply peaked near k = k,. The mathematical form of the integral (4) naturally
guarantees that the resulting wave packet ¥(z,t) will be confined to a particular region of space
because the integral is essentially essentially a sum of complex numbers with varying phases. For
most values of x, these phases vary rapidly, resulting in much cancellation and a small absolute
value of the integral.

To sketch the behavior of the integral, we write @(k‘) as the product of its amplitude and a
complex phase _ _

D(k) = [P(k)|e ),

where ¢,(k) describes the phase of the packet. Note [¢)(k)| is peaked about k = k, as in Figure 4.

With this separation we may rewrite (4) as the integral of the product of real amplitudes with

complex phases, _
k)| : hk2
T(z,t) = /dk‘ |p(k)| equo(k)ezkzefz%t‘ (5)
V2or
Such integrals are best analyzed using the method of stationary phase as described in the next
section.
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2.6 The Method of Stationary Phase: Location of the packet

Figure 4 gives a representation of the integrand in (5). The integrand at each value of k, |¢)(k)| ew"(k)eikwe_i%t/\/ﬂ,
is sketched as a complex vector with its base placed at the corresponding point k along the real axis.
The significant contributions to the integral all come from the points near k, where the amplitude
of the numbers is most significant. The figure shows two cases. In one case (the solid arrows), the
phases vary rapidly across the region of significant contributions, whereas in the second case (the
dashed arrows), the phases vary slowly in the region of significance.

The value of the integral is the sum of these vector obtained by adding them tail-to-head as in
Figure 5. In the case where the phases vary rapidly near k,, relatively little net progress is made
away from the origin of the complex plane as the contributing vectors spin around. The result of
this behavior is a small magnitude for the wave function, |¥(z,t)|. In the second case where the
phases vary slowly, on the other hand, the vectors all line up to produce a large final magnitude for
the wave function |¥(z,1)|.

We see, therefore, that the largest |¥(z,t) come when the phase is as constant, as stationary,
as possible in the region where [¢)(k)| is most significant. Defining ®(k) as the total phase of the
integrand, this is the condition that

0 = 0O (2(K),, (6)
hk>
= 8k (¢o(k) + kx — %t N
= ¢ (ko) +x— hn’zot (7)

Applying the general condition (6) to locate the regions of greatest contribution from an integral is
referred to as The Method of Stationary Phase.



In our specific case, the great magnitude of |¥(z,t)| occurs when (7) is satisfied, when

hk,
m t— ¢o(k0)'

z(t) =

The most probable location for the particle follows the same trajectory in time as does a classical
particle traveling with the velocity v = fik,/m. The physical interpretation of the states near
¢k, () as beams of particles traveling with the classically expected velocity is indeed correct!

The analysis here further gives the location of the packet at time ¢t = 0,

Lo = _¢£)(k0)a

and the time ¢, when the center of the packet crosses the origin,
1
to = _¢;(ko)-
Vel

The three lessons of general applicability to be taken from this section are
1. Beams of particles ¢ (z) carry wave packets at the classically expected velocity.

2. The Method of Stationary Phase tells us that the most significant contributions from the
integral of a complex integrand come when the phase of the integrand does not vary at the
point of its maximum magnitude.

3. The initial location of a wave packet and the time when it crosses z = 0 are both determined
by the derivative of the phase of the weights of superposition 1) evaluated at the momentum
where the packet is concentrated.

3 General Features of Scattering States

After having reviewed the propagation of packets in free space in detail and developed new general
methods, we are in a position to discuss the general theory of scattering states. In the next section,
we will apply these general principles to the case of scattering from a potential step.

3.1 Summary

Here we gather summarize the main results of what follows in this section.

To determine the scattering properties of a particular potential, one first divides space into three
regions as in Figure 7. The potential is taken to be constant in the “source” region s, extending
by convention from x = —oo to £ = 0. This is the region from which particles from an external
source come to interact with the potential. It is also this region into which particles reflect back.
The potential is also be taken constant in the “transmitted” region ¢, extending by convention from
z = L to x = oo. This is the region into which particles originating from the source in Region s
may be transmitted. Finally, in Region ¢, where the collisions generating the scattering takes place,
the wave functions may take on arbitrarily complicated forms. Note that one may generalize our
results to situations where the particles are incident onto the potential from the right by changing
the direction the x-axis.

Once the potential is determined, the first step in analyzing the problem is to solve the TISE
with left-incident boundary conditions, which state that the form of the wave function in Region ¢
is just some pure beam state t(k)e?** of particles traveling to the right. This determines the entire
solution to the TISE, which, by multiplying through by a normalization constant, may always be
put into the following general form,

gike o—ike .
S +r(k) N Region s
¢r(z) = { something complicated Region ¢ (8)

iky (k)(z—L)

t(k) W Region t



where k:(k) is the wave vector in Region ¢ written as a function of the incoming wave vector in
Region s. Once the quantum amplitudes (k) and t(k) for the reflected and transmitted beams,
respectively, are determined, all of the relevant issues in scattering may be studied.

Probability of Reflection and Transmission— The magnitudes of the scattering amplitudes give
the probabilities of a particle reflecting or transmitting,

P = |7'(I<30)|2
P = |t(k0)|2a

respectively, where k, is the wave vector about which the incoming wave packet is centered.
Time delays— The time delays for transmission and reflection after the source packet collides
with Region ¢ are determined by the phases of the quantum amplitudes, which are defined through

(k) = (k)
k) = [t(k)|ei® .

The reflected packet emerges into Region s a time At, after the source packet collides with
Region ¢, and the transmitted packet emerges into Region ¢ a time At; after the source packet
collides with Region c,

At = (¢h(ko)) /05 (9)
Aty = (¢4(ko)) /0%, (10)

Here, k, is the wave vector about which the incoming wave packet is centered and Ugls) = hk,/m is
the classical velocity expected of a particle propagating in Region s.

3.2 Solutions of the TISE

In general, scattering states are pure states of energy (solutions to the TISE) where there is a
classically allowed region at either x — —o0 or x — 400, or both. States with energies E3 or Ey
in the Asymmetric Finite Square Well in Figure 6, for instance, are scattering states. On the other
hand, a state with energy FEs would not be a scattering state but rather a bound state because
both regions z — o0 are forbidden. Finally, a state with energy F; is forbidden from all regions,
must always curve away from the z-axis and thus grows exponentially in at least one of the limits
z — £00 and would never be acceptable physically.

The TISE is a second order equation, we thus expect its general solutions to involve two degrees
of freedom, one of which corresponds to the normalization of the wave function, leaving only one
remaining degree of freedom in the solution. For bound state energies such as F,, we impose
two boundary conditions, that the exponentially component of the wave function be zero in decay
exponentially in both forbidden regions x — +00. It is in general impossible to satisfy both of these
conditions with the one degree of freedom remaining to our solutions. This is why we find solutions
for bound states only under very special circumstances, only at the allowed energies.

For scattering states such as E3 where exactly one region of the two regions at infinity is for-
bidden, we need to impose only one boundary condition, exponential decay in the forbidden region.
(The oscillatory form of the solutions in the classically allowed region always results in physically
acceptable behavior.) The one boundary condition which we now impose may always be satisfied
with the one remaining degree of freedom in the normalized solution of the TISE. The solution is
thus completely determined, and there is exactly one solution for each energy in this range.

Finally, when we move to energies in the range of F,, the states naturally remain oscillatory in
both allowed regions as z — +o00. The one remaining degree of freedom corresponds to the fact that
there are two linearly independent physical solutions to the TISE for each energy in this range which
we may then mix together arbitrarily. This is precisely what we found for particles propagating in
free space in Section 2.3.
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Figure 6: Ranges of disallowed, bound and scattering states in an Asymmetric Finite Square Well

3.3 Left- and right- incident boundary conditions

There is a standard choice for the two linearly independent solutions of the TISE in cases where
the particle is classically allowed at infinite distances in both directions. Note that in the case
of particles moving in free space, the solutions ¢y(z) for £ > 0 contain only currents moving to
the right as x — 4o00. This is an appropriate state for when one imagines particles originating
from a source on the far left of the system. The boundary condition that there be no left-moving
currents for z — 400 is termed the left-incident boundary condition. Setting this condition removes
all freedom and specifies a unique solution to the TISE, once a convention for normalization have
been specified. The right-incident boundary condition, that there be no right-moving currents as
T — —00, specifies another, linearly independent solution. These boundary conditions are sketched
in Figure 7. As indicated in the figure, specifying either condition on one side of the system will in
general generate solutions traveling in both directions on the other side.

As indicated in Figure 7, we may generally divide the problem into three regions. A scattering
or collision region (Region ¢ in the figure) where there is a disturbance in the potential, and two
regions (Regions s and t), where particles propagate normally. Although the form of the wave
function in Region ¢ may be complicated, the solutions to the TISE in Regions s and ¢ will be linear

combinations of plane waves ¢y (z) with wave vectors given by k,;; = :i:\/?m(E - Vs,t)/hz, where
Vs, is the value of the (constant) potential in the corresponding region. The precise form of the
linear combination will be determined by the solution of the TISE in the scattering region.

For the left-incident case, which we will associate with values £ > 0, in general we will find
solutions to the TISE of the form,

Seike 4 Re~tke Region s
¢r(x) = { something complicated Region ¢ (11)
Tetke(k)(z—L) Region ¢

where we have taken care to follow our usual practice and centered our functions on the boundaries
of the regions in which they are defined. In 11, k refers to the wave vector in region of the source,

10



L eft-incident boundary conditions (k>0):
Region's Region c Region t

L

x=0 x=L

Right-incident boundary conditions (k<0):
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Figure 7: Left- (top) and Right- (bottom) Incident Boundary Conditions: The source, reflected and
transmitted beams in either case are indicated by s, r and t, respectively. (We label the region z < 0
“Region s” because our convention is to work with left-incident boundary conditions.)
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Region s. This wave vector determines the energy of the state and thus also the wave vector
in Region ¢, which we have written as a function of the source wave vector, ki(k). The relation
E = h2k2/2m + Vs = h2kf/2m + V; determines this function to be

k() = 12 - V) = VPR QL (12)

where Q2 = :I: 22 (Vi — V) is a measure of the difference in potential going from Region s to Region
t. This 51gn in the definition of (), is generally chosen so as to make (), a real number.

We have left the form of the solution in Region ¢ unspecified because the form of the wave
function in this region is not directly needed to determine the behavior of the wave packets entering
and leaving the scattering region — only the final form of the solution to the TISE in the regions s and
t. Currently, the factors S, R and T' are undetermined because we have yet to choose a normalization
convention for such states. Finally, we note that in the case where Region ¢ classically forbidden,
we insist upon exponentially decaying solutions, and only the factors S and R then play explicit
roles in the scattering of particles.

3.4 Normalization Convention

In scattering theory the most natural choice of normalization is that the incoming “source” beam
carry one particle per unit time. Note that according to 3, such a beam which carries a unit current,
to the right or left respectively, always has the form et®i#2 /+/hk/m. To produce a solution with
this normalization of the incoming beam, we may simply multiplying any general solution of the

form 11 through by the factor 1/(S+/hk/m) to produce

ke .
S +r (k)W Region s

¢r(x) = { something complicated Region ¢ , (13)

eikt (k)(2—L)

t(k )\/W Region ¢
where (k) = (R/S)/sqrthik/m and t(k) = (T/S)\/kt(k)/k//hk/m. Note that some extra care

has been taken with the transmitted term to write it also in terms of a beam carrying unit current,
so that all three beams of particles, source, reflected and transmitted are written a unit currents,
with perhaps some prefactors attached. These prefactors have very simple physical interpretations
and are thus given a special name. The factors r(k) and #(k) are called the quantum amplitudes for
reflection and transmission, respectively.

Note that right-incident solutions, which we associate with values of k¥ < 0, should also be written
in this special normalized form,

—1km

! .
t'(k)-< NI Region s

¢r(z) = { something complicated Region ¢
e—ikt(z—L) ikt (z—L)

e thle ) 1oy etk =1 ]
\/m +7r (k) Rk /m Region t

Throughout the rest of these notes, we will consider problems with particles incident from the
left and thus use left-incident boundary conditions. All results are easily generalized to the right-
incident case by reflecting the problem about the point z = L/2.

3.5 Physical interpretation of the solutions of the TISE

The physical interpretation of the right-incident solutions (13), is that Region s contains two beams
of particles, one, emanating from the source, carrying j, = 1 particles per unit time toward the

right, and the other, carrying j, = (5)/(\/hk/m)2|r(k)|2 = |r(k)|? reflected particles per unit

time toward the left. Region c is the scattering region about which we need say little. Finally,

12



Region t contains a single beam of particles transmitted through the scattering region and carrying
Jt = Ugf)/(\/hkt/m)2|t(k)|2 = |t(k)|? particles per unit time toward the right.

Knowing the magnitude of the currents gives the answer to the first question of scattering
theory, the probability of a particle being scattered in either direction, to the left or to the right.
The probability of reflection P, is just the ratio of the number of particles reflected per unit time, j,,
to the total number of particles incident from the source per unit time, j;. Similarly, the probability
of transmission is the ratio of j; to js. In either case j;, = 1 and thus we expect,

P = |r(k)P (14)
B = [tk

Note that our original derivation of the form of the probability current j(z,t) = (h/m)S(¢ *
0,1) deals with the entire wave function 1(z,t) at point # and makes no distinction between
different component parts of the wave function traveling in different directions whose currents may
be evaluated separately. At present, the separation between the incoming and reflected currents
is a new physical idea which we have brought into our formalism. We shall justify it fully in the
next section where we show that in a solution to the TDSE made of an identifiable incoming wave
packet one first finds a distinct wave packet traveling toward the collision region which is made
up in such a way that the only significant contribution to the back in Region s comes from the
incoming beam. Later, a partially reflected wave packet, to which only the reflected beam part of
the solution to the TISE contributes, returns back toward the source. It is the fact that incoming
and reflected beam parts are active at different times in the scattering of a wave packet which gives
the ultimate justification for our physical separation of the two currents which occupy the same
region of space. Below, we will see that (15) does not tell the whole story, but is really only valid
in the approximation of an incoming wave packet which is nearly a pure state of momentum.

3.6 Wave packets

As in the free particle case, the time dependent wave packet solution to the TDSE is the general
superposition of pure energy states with the appropriate time-dependent phase factors,

v = [ dk—%’%ﬁ(k)m(m)e—i%, (19

something complicated Region ¢ } e % %m
iky (k) (2—L)
€

/ hk/m ~( ) \/ﬁk/m ( )\/ﬁk/ eglons ﬁkzt
dk Y G
t( )m Regiont

(16)

where the factor \/fik/m//27 is just for normalization so that, as we show in the next paragraph,
U(z,t) is normalized so long as is 1)(k). Also, we again regard |{)(k)| as sharply peaked near some
value of incoming momentum, k = k,.

There are three terms in this expression, associated with either the source, the reflected or the
transmitted packet. Each is an integral of the form we analyzed in free space in Section 2. Explicitly,
the three terms are

Vat) = [ detee (1)
Uo(et) = [ B (ke et (18)

T

y(z,t) = \/d:_ﬂ- @Z(k) }k (k)t(k)ezkt(k)(w L)e—z 2o b (19)

13




The complete scattering solution may be reassembled from these integrals,

Uy(z,t) + Up(z,t) Region s
U(x,t) = { something complicated Region ¢ . (20)
U, (z,t) Region ¢

3.7 Location of the packets
The phases of the three packets 17-19 are

D(k) = ¢o(k)+ kzx — Z—f:t (21)
B0K) = Gulk)+ 6,(k) — ke — (22)
@) = GulE)+ )+ k() — L)~ o,

respectively. Evaluating the corresponding stationary phase conditions gives

0 = @(k)
hk,
= ¢L(ko) +oz— —t
m
=
hk,
zs(t) = —dy(ko) + m t
for the location of the source packet,
0 = & (ko)
hk
_ / / o 4
= ¢,(ko) + ¢r(ko) — = m t
=
hk,
zr(t) = Gp(ko) + br(ko) — t
m
for the location of the reflected packet, and
0 = &;(k,)
/ / ! hko
= Golko) + di(ko) + kiko)(@ — L) — ——~t
k hk
_ ! 0 (p—L)= 2¢
= Gk + ik + (o= 1) - e
=
ke (ko hk (ko
wult) = L= () g ry)) + PRl

for the transmitted packet. For evaluation of the expression for the transmitted packet, we have
used the identity,

O — k k
- — = 2
dk —akVE T e T R (23)

where as in Section 3.3, Q2 = +22(V; — Vj).

We first note that in all three cases, we find packets traveling with the expected classical veloc-
ities, Ugls) = hko/m, —US) = —hk,/m and US) = hk¢(k,), for the source, reflected and transmitted
packets, respectively.

Let us call ¢t = 0 a time when the source packet ¥,(z,t) is entirely within Region s. The
source packet then begins at z5(0) = —¢!(k,) < 0 and then propagates to the right, until at time

14
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Figure 8: Evolution of the source packet in a general scattering problem
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(t>tr) (t=t_r) (t=0)
AN\ VAN
‘ =
X=0 X=L

Figure 9: Evolution of the reflected packet in a general scattering problem

te = ¢l (ko) /vgls), its center reaches the point z = 0 where the particle first “collides” with the
collision region. (See Figure 8.) At this moment, half of the packet extends into Region c. Note
that because ¥4(x,t) is only evaluated in Region s in (20), the part of the source packet extending
into Region ¢ makes no contribution to the final wave function ¥(z,t). As time goes on, U,(z,t)
eventually enters Regions ¢ and ¢ entirely, at which point the source packet entirely disappears from
the problem.

The location of the reflected packet at time ¢ = 0 is ,.(0) = ¢, (k,) + ¢}.(k,), which then must
be entirely within Regions ¢ and ¢. At this point in time, the reflected packet makes no contribution
to the problem. (¥,(z,t) is only evaluated in Region s in (20).) As this packet then travels to the
left, eventually, at time ¢, = (¢ (k,) + ¢;~(ko))/vf,ls) =t + (;5;,(]90)/1)&5), it reaches the point z = 0
and emerges into Region s, from where it continues back toward the source. (See Figure 9.) Note
that the time ¢, at which the reflection emerges into the problem may is delayed by a period

Aty = ¢l(ko) /v
from the moment when the source packet first collides with the scattering region.

At t = 0, the transmitted packet ¥;(z,t) is located at z;(0) = L — % (¢, (ko) + ¢1(k,)) and
contained within within Regions s and ¢. This packet eventually emergeso into the problem at the

moment when z,(0) = L, at time ¢, = o) (g (k,) + (ko)) /oD = ()(ko) + B(ko)) /0 =

cl
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Figure 10: Evolution of the transmitted packet in a general scattering problem

te + ¢£(ko)/v£ls), which is a period
Aty = ¢l (ko) /v

cl

later than the moment ¢, when the source packet collides with the scattering region. (See Figure
10.)
Taken all together, ¥(z,t) describes the following sequence of events. First, there is only a packet

from the source traveling to the right in Region s at velocity vgls). Then, at time t. = ¢} (k,) /vgls)
determined by the initial conditions, this packet collides with the scattering region, Region c. A
period At, = ¢r(ko)/ 'Ugls) later, which is characteristic of the scattering potential only, a reflected
packet emerges back from Region c into Region s and then continues to move to the left with velocity
—US) . An additional transmitted packet emerges into Region ¢ a period At, = ((b's(ko)—(ﬁ;(ko))/vgls),
which again is a characteristic of the scattering potential only, after the collision at time ¢ = ¢, and
travels to the right with velocity US). The order in which the reflected and transmitted packets

emerge depends on the sizes of At, and At,.

3.8 Normalization of the Packets

We now complete our general discussion of scattering theory by verifying explicitly that the formulae
(15), which were derived from different beam components of a single stationary solution to the TISE
do indeed give the correct normalizations of the reflected and transmitted parts of an incoming wave
packet.

The total probability associated with each of the packets is best determined in momentum space.
From 17 is it clear that the momentum space wave function representation of the source packet at
time ¢ is

~ ~ . 2
B, (k1) = P(k)e "o,
so that the total probability associated with the source packet is

Po= [kt = [aeldmP =1

We know that the total probability associated with ¥, must be one because for t << 0, this is the
only one of the packets which makes a contribution to the time dependent wave function, which
always much be normalized.

To determine the momentum space representation of ¥,.(x,t), for the purpose of finding the
probability of reflection P, we must manipulate (18) into the form of a standard Fourier transform.
We may accomplish this by making the change of variables ¥ — —k. Under such a change of
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variables, ffooo dkI(k) — f;oo(—dk) I(-k) = ffooo dk I(k), so that k is simply replaced by —k in
the integrand I(k). Applying this to (18) then gives us

Vat) = [ iRkt
=
Bo(k,t) = G(—k)r(—k)e= ¥t
=
P = / ks |db(— k) P r(—F) 2 (24)

_ / dk [ (k) 2| (K)|2,

where in the last step we have changed back to the original k£ variable by making the change
k — —k once again. This is the complete, ezact expression for the reflection probability. Generally,
we deal in the narrow packet approrimation under which |1ﬁ(k)|, much like a Dirac —function is so
concentrated about k = k, that neither r(k) nor ¢(k) vary significantly over the range of k for which
|gﬁ(k)| is appreciable. Under these circumstances, |r(k)| may be replaced to a good approximation
by its value at k = k,, so that

Pr

Q

[ k1P

(ko) / dk | (k)
= [r(k),

which is what we found in (15) based on the probability current.

To determine the full, ezact form of the probability of transmission P;, we require the momentum
space representation of Uy(z,t). To do this we note that (19) does not appear in the standard
momentum representation form because the variable of integration, &, is not the same wave vector
which appears describing the pure momentum states, k;. To produce the more familiar form, we
should thus change the variable of integration to k;. (12) gives the relationship between k and k;
so that we may perform the change of variables in (19).

Vy(a,t) = jj—ﬂzﬁ(k)

-/ (dy/—d’“’ T YR ) e

_ (k/kt 7
= Jan P(k(ke))

dk: - , mc (kt)
— t (kt ) )ezkt(w L t

where we have used dk;/dk = k/k; from (23) and have taken care to write everything now as a
function of k. If needed, the function k(k;) is easily determined by inverting (12). Now that we
have the standard form of the momentum superposition, we may pick-off the momentum space wave
function, now in terms of k; instead of k, thereby using in effect Parseval’s theorem to determine
the normalization of transmitted packet,

t(k) iks (k) (z— L) sz

ki (k)

( +)

2
Bk (kt)t

)) zk,(z—L)

ky

mt(k(kt))lﬁ(k(kt))e—ikiLe_i%t

‘I-}(ktat)

17



P - / dk, k(’j;t) [tk (k)) [2 B () (25)

1 ~
= [ by g R PR
dk
= [P
Here again, we have used the identity (23), and in our last step changed the integration variable

back to k. This is the full, ezact expression for P;. As with the reflected packet, it is easy to
determine the transmission probability when working in the narrow packet limit,

B

Q

JRO ROl

(ko) / dk (k)|
= Jika)P,

Il

which is what we found in (15) based on the probability current.

There are two important lessons to be learned from this section. First, the results (15) determined
using the simpler idea of monitoring the transmitted and reflected contributions to the current were
indeed correct, but only when the packet is very narrowly distributed in momentum space. It is
important to keep this caveat in mind. In some cases in scattering theory, particularly in the study of
resonance, (k) and t(k) become very sharply peaked, so that it becomes very demanding to produce
incoming wave packets with |¢)(k)| which is truly narrowly peaked in comparison. The second
lesson is that there are more exact expressions available (24,25) for the reflection and transmission
probabilities in cases where the packet is not so narrow.

4 Example: Scattering from a Potential Step

Let us now carry out the program outlined in Section 3.1 for the example of the potential step first
introduced in Figure 1, thereby in effect producing the results in Figure 2 for which until now we
had to rely on a computer generated solution.

4.1 Solutions to the TISE

In this case we only have two regions separated by a point discontinuity in the potential at x = 0.
Region s ends at x = 0 and Region ¢ begins at x = 0. Region c is just the point z = 0.

The left-incident boundary conditions at 00 set the form of the wave function in Region ¢ to a
wave of the form te?**® where kZ = 2m(E — V,,)/h.

The general form of the solutions in Region s are oscillatory with wave vector k; = k = 2mE/ 1.
The most convenient form of such solutions for matching the boundary conditions at x = 0 is a
combination of sine and cosine centered at = 0, giving

W(z) = Acoskx + Bsinkzx x <0
T etk x>0

Matching boundary conditions at z = 0 gives the solution,

$s(0) = (0):  A=1.
ki

WO =U0):  kB=ik=B=it
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A and B determine our full solution. To determine s and r, we now expand the sines and cosines
in complex exponentials,

Ys(z) = Acoskz+ Bsinkz (26)

eikz + ef'ikz N Zkt eikz _ efika:
2 k 24

_ 1 ke \ ko 1 ke\ _ika
wt(x) — eiktw’

where for completeness, we have also included the present form of the transmitted solution.

Given the raw solution 26, the next step in the solution process is to set the overall normalization
of the solution. To extract proper quantum amplitudes, we must have a unit incoming current. The
we achieve by multiplying the entire raw solution through by 2/(1 + k;/t)/+/hk/m resulting in

etke 1—Fk/k e—ikx

Vhk]m iy ke/k \/hk]/m

2 eiktz
1 +kt/k 1/hk/m.

This form now has a unit incoming current. In addition, we have the reflected beam expressed as
a simple factor times the unit reflected beam e~%2/,/hk/m. The one difficulty with this form is
that the transmitted beam is not also written in terms of a unit current beam because the wave
vector in the transmitted part e?*:* does not match the wave vector appearing in the normalizing
square-root \/fik/m. To rectify this situation, we rearrange the factors in ¢, taking care to do
absolutely nothing to change the final value of this part of the wave function, which is set entirely
by Schrédinger’s equation, our boundary conditions and the normalization to unit incoming current,

¢s($) =

Yi()

eike N 1—ki/k e—ikz
Vak/m 1+ k/k .\ /hk/m
2 ki etki®

1+ k/kV & /iy /m

Our final wave function, after some minor algebra of gathering factors and clearing fractions, is

¢s(x) =

Yi(z) =

etke k—k: e—ika
+ k+k: <0
Y(z) = ;/h/—kkk/tm Jikee Vik/m . (27)

(= oy x>0

The quantum amplitudes for reflection and transmission are thus

k—k;
= 2
o= (28)
_ 2y kk;
t(k)  k+ k¢

4.2 Physical interpretation of the solution: probabilities of reflection and
transmission and discussion

Physically, (27) corresponds to a source current of one particle impinging on the step per unit
time, which then results in a current of j, = |r(k)|? particles reflected per unit time and j; =
|t(k)|? particles transmitted per unit time. The probabilities of reflection and transmission are thus
respectively P, = |r(k)|? and P, = |t(k)|*.
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We now have two cases to consider. In the case where E > V,,, both k and k; are real numbers.

We then have,

poo ok
(k + k¢)?
4kk;

P = ——.

' (k + k)2

It is always good practice to check that the transmission and reflection probabilities sum to unity.
In this case, we have
(k — ke)? + 4%k (b + k)* .

(k + k)2 (bt k)2

In the case where E < V,, the solution in Region ¢ is a decaying exponential. Such a function is
a real function and the expression for the current j; = (h/m)3{¢*0,1} gives zero when ¢ is a real
function. Thus P, = 0. For P, we must take care to note that the wave vector in Region ¢ is now

imaginary, k; = +ia;, where
o =/ Q2 — k2. (29)

We verify our choice of k; by noting that with this choice, e?*** = e~%®  a proper exponentially
decaying solution. With k; determined in this way, we then have

P+ P =

kE—ioyg)> k2402
| t
kE+iog2 k2+a?
| t

T

Thus, also when E <V, we find P; + P, = 1.

Our full formula for the reflection probability may be written out as

2 2
o k— [k - 2my _ 1— /1 -V R _ 11— J1-V/T|
k+y/k2— 22V 1—\/1+V/EE 1+1-V/T

where T is the kinetic energy of the incoming particle. This quantity sets the basic energy scale
for the problem. Plotting the scattering probabilities in terms of V/T, which is the strength of the
potential in terms of the kinetic energy of the incoming particles, gives the results in Figure 11.

First we notice, that as expected, when there is no step (V, = 0), there is perfect transmission,
Pr =1 and Pr = 0. For negative values of V,,/T, we have a downward step, and surprisingly (in
classical terms) there is a non-zero probability of reflection. In fact, as Vy/T — —o0, Pg — 1, and
nearly all particles are reflected. From the wave-propagation point of view, this is not surprising.
The k’s describe the nature of propagation of the wave in the different regions. A large step V,
results is a large difference in how the waves propagate in each region, which generates a large
reflection.

For V,/T > 0, we are studying reflections from an upward step in potential. As V, increases
Pg, increases from zero until we reach the special point where V, = T'. After this point, the kinetic
energy of the incoming particle is less than the height of the potential barrier, so that as we have
seen, the reflection probability becomes P, = 1.

?

4.3 Time delay

In the case E > V,, (28) gives t and r as just real numbers because k and k; are real. The phases
on t and r are just ¢; = 0 and ¢, = 0 for k > k; (an upward step) or ¢, = 7 for k < k; (a
downward step). For either an upward or downward step, so long as FE > V,, the phases ¢, and ¢,
are independent of k¥ and therefore, according to (10) there is no time lag in the generation of the
transmitted or reflected packets.

The case £ < V, is somewhat different. There is no transmitted packet propagating in the
forbidden region. However, there is a reflected packet ¥,.(z,t) which we have already studied in
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Scattering from a Potential Step
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Figure 11: Scattering probabilities from a potential step of height Vo as a function of Vo/T, where
T is the kinetic energy of the incoming particles.
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Figure 12: Components of ¢, in the complex plane
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Section 3.7. There we showed that the time lag in the emergence of the reflected packet depends
on the derivative of the phase of r(k).

To help find this derivative we refer to Figure 12. As shown in the figure the complex numbers
k+ta and k — iy appear opposite each other across the z-axis. Thus, if we denote the phase angle
of k+ia; by ¢ then then phase angle of k—iq; will be —¢. Now, because the phase angle of the ratio
of two complex numbers is the difference between their phase angles and r = (k — i)/ (k + i),
we have ¢, = —2¢. Next we note from (29) that a? + k? = Q2 which is also indicated in the figure
as the length of the hypotenuse of each right triangle in the figure. From the figure we see that
¢ = arccos(k/Q,), and thus ¢, = —2arccos(k/Q,). Putting all of this together, we find

1
Atr = —6k¢r(k)
(&)
cl
1
— ﬂ(’)k(—2arccos(k/Qo))
Vel
1
vy 1—(k/Qo)2
- L L
US) \/m
_ 2/0&15
MON

cl

For our labor we are rewarded with a simple result with a beautiful physical interpretation! The

packet spends an extra time (2/ay) /vgls) in the forbidden region. But, this is just the extra time
the packet would take to penetrate a distance 1/a; into the forbidden region and then return. And,
1/a; is just the quantum penetration depth we expect into Region ¢!!!
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