schdebug

Here we test the function schint:

E=-.5

Outward integration test:

0 nodes

Return value of Psi: 24430075685.431213378906

<table>
<thead>
<tr>
<th>k</th>
<th>r</th>
<th>Psianal</th>
<th>Psiout</th>
<th>Psiout/Psianal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000000000000</td>
<td>0.000000000000</td>
<td>0.000000000000</td>
<td>nan</td>
</tr>
<tr>
<td>2</td>
<td>0.000408163265</td>
<td>0.000407996702</td>
<td>0.000407939039</td>
<td>0.999858668393</td>
</tr>
<tr>
<td>4</td>
<td>0.001666666667</td>
<td>0.001663891202</td>
<td>0.001663809564</td>
<td>0.999950935283</td>
</tr>
<tr>
<td>6</td>
<td>0.003829787234</td>
<td>0.003815148014</td>
<td>0.003815047596</td>
<td>0.999973679188</td>
</tr>
<tr>
<td>8</td>
<td>0.006956521739</td>
<td>0.006908296479</td>
<td>0.006908178397</td>
<td>0.999982907289</td>
</tr>
<tr>
<td>10</td>
<td>0.011111111111</td>
<td>0.010988337659</td>
<td>0.010988201652</td>
<td>0.999987622613</td>
</tr>
<tr>
<td>12</td>
<td>0.016666666667</td>
<td>0.016098046701</td>
<td>0.016097891867</td>
<td>0.999990381826</td>
</tr>
<tr>
<td>14</td>
<td>0.022790697674</td>
<td>0.022277155989</td>
<td>0.022276981074</td>
<td>0.999992148236</td>
</tr>
<tr>
<td>16</td>
<td>0.030476190476</td>
<td>0.029561402717</td>
<td>0.029561260253</td>
<td>0.999993540453</td>
</tr>
<tr>
<td>18</td>
<td>0.039512195122</td>
<td>0.037981422796</td>
<td>0.037981201652</td>
<td>0.999994217894</td>
</tr>
<tr>
<td>20</td>
<td>0.050000000000</td>
<td>0.047561471225</td>
<td>0.047561226787</td>
<td>0.999994860579</td>
</tr>
<tr>
<td>22</td>
<td>0.062051282051</td>
<td>0.058317947363</td>
<td>0.058317667390</td>
<td>0.999995335323</td>
</tr>
<tr>
<td>24</td>
<td>0.07579473684</td>
<td>0.070257702035</td>
<td>0.070257402833</td>
<td>0.999995741351</td>
</tr>
<tr>
<td>26</td>
<td>0.091351351351</td>
<td>0.083376102245</td>
<td>0.083375773173</td>
<td>0.999996053160</td>
</tr>
<tr>
<td>28</td>
<td>0.108888888889</td>
<td>0.097654828728</td>
<td>0.097654682558</td>
<td>0.999996308738</td>
</tr>
<tr>
<td>30</td>
<td>0.128571428571</td>
<td>0.113059382067</td>
<td>0.113058988845</td>
<td>0.999996521994</td>
</tr>
<tr>
<td>32</td>
<td>0.150588235294</td>
<td>0.129536275049</td>
<td>0.129535847975</td>
<td>0.999996703051</td>
</tr>
<tr>
<td>34</td>
<td>0.175151515152</td>
<td>0.147009893179</td>
<td>0.147009431501</td>
<td>0.999996859549</td>
</tr>
<tr>
<td>36</td>
<td>0.202500000000</td>
<td>0.165379012726</td>
<td>0.165378516174</td>
<td>0.999996997492</td>
</tr>
<tr>
<td>k</td>
<td>r</td>
<td>Psianal</td>
<td>Psiout</td>
<td>Psiout/Psianal</td>
</tr>
<tr>
<td>----</td>
<td>-----------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>0</td>
<td>0.000000000000</td>
<td>0.000000000000</td>
<td>2.443007568612e+10</td>
<td>inf</td>
</tr>
<tr>
<td>2</td>
<td>0.000408163265</td>
<td>0.000407996702</td>
<td>1.36742822364e+13</td>
<td>3.351568322720e+16</td>
</tr>
<tr>
<td>4</td>
<td>0.001666666667</td>
<td>0.001663891202</td>
<td>5.56962577551e+13</td>
<td>3.347349735041e+16</td>
</tr>
<tr>
<td>6</td>
<td>0.003829787234</td>
<td>0.003815148014</td>
<td>1.276775018934e+14</td>
<td>3.34659366841e+16</td>
</tr>
<tr>
<td>8</td>
<td>0.006956521799</td>
<td>0.006903012256</td>
<td>2.311747312891e+14</td>
<td>3.34634830791e+16</td>
</tr>
<tr>
<td>10</td>
<td>0.011111111111</td>
<td>0.010988337659</td>
<td>3.676936177715e+14</td>
<td>3.346216954630e+16</td>
</tr>
<tr>
<td>12</td>
<td>0.016363636364</td>
<td>0.016098046701</td>
<td>5.386653813620e+14</td>
<td>3.346153675397e+16</td>
</tr>
</tbody>
</table>

Inward integration test:
Notice that on the inward integration, we don’t quite reach zero; we expect this to improve for greater N.

A test of node counting just above the second exited state:

\[E = -0.05 \]

Outward integration test:

\[\text{3 nodes} \]
.
.
.

Inward integration test:

\[\text{3 nodes} \]
.
.
.
Edebug

Searching for the ground state:

E1=-1.0
E2=-.3

Search for energy in range (-1.0000000000000000, -0.3000000000000000):
N=10

(50 iterations in rtbisp480, func=1.236754e-13)
Solution from rtbisp480: E= -0.4854389178271255
(8 iterations in zriddrp480, fnew=1.581913e-14)
Solution from zriddrp480: E= -0.4854389178271258

Search for energy in range (-1.0000000000000000, -0.3000000000000000):
N=100

(50 iterations in rtbisp480, func=4.998395e+00)
Solution from rtbisp480: E= -0.4999985397456193
(6 iterations in zriddrp480, fnew=-5.013834e-01)
Solution from zriddrp480: E= -0.4999985397456195

Search for energy in range (-1.0000000000000000, -0.3000000000000000):
N=1000

(50 iterations in rtbisp480, func=8.859815e+47)
Solution from rtbisp480: E= -0.499999998459483
(13 iterations in zriddrp480, fnew=7.326148e+46)
Solution from zriddrp480: E= -0.499999998459486

Search for energy in range (-1.0000000000000000, -0.3000000000000000):
N=10000

(50 iterations in rtbisp480, func=-1.080807e+102)
Solution from rtbisp480: E= -0.4999999999999837
(10 iterations in zriddrp480, fnew=-2.095120e-101)
Solution from zriddrp480: E= -0.4999999999999836

Search for energy in range (-1.0000000000000000, -0.3000000000000000):
N=100000

(50 iterations in rtbisp480, func=-1.507457e+85)
Solution from rtbisp480: E= -0.5000000000000024
(13 iterations in zriddrp480, fnew=3.424516e+84)
Solution from zriddrp480: E= -0.5000000000000030

Searching for the first excited state:

E1=-.2
E2=-.1

Search for energy in range (-0.2000000000000000, -0.1000000000000000):
N=1000

(47 iterations in rtbisp480, func=-1.916153e+27)
Solution from rtbisp480: E= -0.124999989678650
(7 iterations in zriddrp480, fnew=-2.204524e+25)
Solution from zriddrp480: E= -0.124999989678645
Search for energy in range \((-0.2, -0.1)\):
\(N=10000\)

\(47\) iterations in \(\text{rtbisp480}\), \(\text{func}=9.209434\times10^{133}\)
Solution from \(\text{rtbisp480}\): \(E = -0.1249999999999977\)

\(8\) iterations in \(\text{zriddrp480}\), \(\text{fnew}=5.570422\times10^{132}\)
Solution from \(\text{zriddrp480}\): \(E = -0.1249999999999974\)

Second excited state:
\(E_1=-.1\)
\(E_2=-.05\)

Search for energy in range \((-0.1, -0.05)\):
\(N=1000\)

\(46\) iterations in \(\text{rtbisp480}\), \(\text{func}=-8.138717\times10^{17}\)
Solution from \(\text{rtbisp480}\): \(E = -0.0555555382690919\)

\(8\) iterations in \(\text{zriddrp480}\), \(\text{fnew}=1.236101\times10^{16}\)
Solution from \(\text{zriddrp480}\): \(E = -0.0555555382690926\)

Search for energy in range \((-0.1, -0.05)\):
\(N=10000\)

\(46\) iterations in \(\text{rtbisp480}\), \(\text{func}=-3.419517\times10^{103}\)
Solution from \(\text{rtbisp480}\): \(E = -0.0555555555538426\)

\(8\) iterations in \(\text{zriddrp480}\), \(\text{fnew}=-1.287723\times10^{102}\)
Solution from \(\text{zriddrp480}\): \(E = -0.0555555555538427\)

How many more can we get?
Note that Ridder's method is spectacularly better than bisection; see NR for a precise notion of 'better'.

6