Physics 214 Fall 2001

Problem Set # 3

Reading for coming lectures: Young & Freedman, Sections 20.1—20-4; 19.6—19.9; 20.5.

Problems: (due 9/25)

Skills to be mastered:

• be able to convert between wavelength (λ), wavenumber or spatial frequency ($\kappa = 1/\lambda$), and wave-vector ($k = 2\pi/\lambda$);

- given the wave speed (v) and any one of the quantities (T, f, ω) , be able to find any one of (λ, κ, k) , and vice versa:
- be able to distinguish between speed of wave propagation and particle speed.
- understand that the longitudinal component of tension τ_x is constant;
- be able to get τ_y knowing $\frac{\partial y}{\partial x}$;
- understand the part of the derivation where the "chunk" mass is $\mu \Delta x$;
- be able to convert expressions like $\frac{\partial y}{\partial x}(x+\Delta x,t)-\frac{\partial y}{\partial x}(x,t)$ to the proper partial derivatives, $\frac{\partial}{\partial x}\left(\frac{\partial y}{\partial x}(x,t)\right)$, in the limit $\Delta x \to 0$:
- be able to confirm a given y(x,t) as a solution to the wave equation;
- be able to derive dispersion relation $\omega = f(k)$ from the standing wave form $y(x,t) = A\cos(\omega t)\cos(kx)$;

1. Problem 1:

In lecture we derived an expression for the complex amplitude of a driven and damped harmonic oscillator: $\underline{A} = Ae^{i\phi_0}$ with is the real amplitude A and the initial phase ϕ_0 given by

$$A = |\underline{A}| = \frac{f}{\sqrt{(\omega_0^2 - \omega^2)^2 + (b\omega)^2}} \quad \text{and} \quad \phi_0 = \tan^{-1} \left(\frac{b\omega}{\omega^2 - \omega_0^2}\right) , \tag{1}$$

where $f \equiv F_0/m$ is the amplitude of the driving force in units of mass and $\omega_0 \equiv \sqrt{k/m}$ is the natural frequency of the system.

In order to better appreciate the physical significance of these quantities and their frequency dependence, it is useful to *plot* them versus frequency and to identify certain important parameters of these plots. In this problem you will do this, starting from analyzing $(A/f)(\omega)$ and $\phi_0(\omega)$ in various limits¹:

(a) Evaluate $(A/f)(\omega = 0)$ and $\phi_0(\omega = 0)$.

¹We will be interested in the *normalized* plot $(A/f)(\omega)$ rather that in $A(\omega)$, because the former clearly shows how the amplitude of the driven oscillations compares with the amplitude of the driving force.

- (b) Evaluate $\lim_{\omega \to \infty} (A/f)(\omega)$ and $\lim_{\omega \to \infty} \phi_0(\omega)$.
- (c) Show that $(A/f)(\omega)$ has a maximum at $\omega = \omega_R = \sqrt{\omega_0^2 b^2/2}$ if $b^2 < 2\omega_0^2$. Express the value of (A/f) at the maximum in terms of ω_0 and b.

Hint: Argue that the ratio of two positive expressions has a maximum when the denominator has a minimum. Then show that the denominator of A in eq. (1) has a minimum at $\omega = \omega_R$ by checking that $\frac{dD(\omega)}{d\omega}\bigg|_{\omega=\omega_R} = 0 \text{ for the function } D(\omega) \equiv (\omega_0^2 - \omega^2)^2 + (b\omega)^2.$

- (d) In the limit $b \ll \omega_0$, show that $\omega_R \approx \omega_0$ and that $(A/f)(\omega)$ is approximately equal to $(A/f)_{\text{max}}/\sqrt{2}$ at each of the frequencies $\omega_{1,2} = \omega_0 \pm b/2$. Compute the 'frequency band-width' $\Delta \omega \equiv \omega_2 \omega_1$.
- (e) Sketch the plots of the functions $(A/f)(\omega)$ and $\phi_0(\omega)$ in the limit $b \ll \omega_0$. Label all important quantities, such as $(A/f)_{\text{max}}$, $\Delta \omega$, etc., expressed in terms of ω_0 and b.

2. Problem 2:

Many cordless phones transmit and receive 900 MHz microwaves. Find the wavelength λ , the wavenumber κ , and propagation number k. Microwaves travel through air at speed $c = 3.0 \times 10^8$ m/s.

3. Problem 3:

Young & Freedman, Problem 19-12.

4. Problem 4:

The propagation of waves along a stretched DNA molecule is described by the modified wave equation

$$\frac{1}{c^2}\frac{\partial^2 y}{\partial t^2} - \frac{\partial^2 y}{\partial x^2} + a^2 \frac{\partial^4 y}{\partial x^4} = 0 \tag{2}$$

where c and a are constants. $(c = \sqrt{\tau/\mu})$, where τ is the tension and μ the linear mass density as for the string considered in class, and a is an elastic parameter independent of tension.)

Show that the standing wave $y(x,t) = A\cos(\omega t)\cos(kx)$ is a solution to the DNA wave equation (2) and derive the dispersion relation $\omega = f(k)$.

5. Problem 5:

A standing wave on a string of mass m fixed at both ends (x = 0 and x = L) is described by

$$y(x,t) = A\sin(kx)\cos(\omega t). \tag{3}$$

Assume that the amplitude of the wave is small $(kA \ll 1)$ and make any justifiable approximations based on that assumption. Consider m, A, k, and ω to be known quantities (i.e. you may leave them in your answers).

(a) What is the x-component of the force due to the string on the fixed point x = 0? (Remember, the string is under tension so it pulls on whatever is holding it.)

²The frequency band-width is the range of frequencies 'preferred' by the driven/damped oscillator. The number $Q \equiv \frac{1}{bT} \approx \frac{1}{2\pi} \frac{\omega_0}{\Delta \omega}$ is called a 'quality factor' or a 'Q-factor'. It is a measure 'how sharp' the resonance is. The value of Q shows how good a mechanical system is in 'selecting' certain frequencies. Large Q-factors are important for instance in pieso-crystals setting the precise timing of quartz watches and computers.

- (b) What is the y-component of the force due to the string on the fixed point x = 0?
- (c) Consider a tiny *chunk* of string of length dx between x and x + dx. Find the x- and y-components of the force on this chunk due to the rest of the string on the left side only.
- (d) Find the x- and y-components of the force on this chunk due to the rest of the string on the right side only.
- (e) Find the net force on the chunk.
- (f) Verify that $\vec{F} = m\vec{a}$ works for the chunk.
- (g) Is the net force on the chunk proportional to its displacement from equilibrium? If so, what is the effective *spring constant* for the restoring force acting on the chunk?