
Physics 214 Fall 2003

Exercise Problems for the Final Exam (“Prelim # 3”)

Note: Below is a list of some exercise problems that could be used as a supplement to your prepara-
tion for the exam. These problems have been given as homework or exam problems in previous years.
Note that the list is not comprehensive and it is not meant to cover all the topics taught in the
course. For instance, you certainly can expect a sum over histories problem to be on the final. (See LN
“Introduction to complex represenation for waves” for a worked out example.) You are primarily re-
sponsible for the material presented in Lectures (everything from N narrow-slit diffraction
on), Problem Sets 9—11, and Lab III. You are expected to understand all the concepts in this
material (including derivations) and to apply them creatively to different situations. Some additional
information can be found on the course web page.

1 Off-Axis Diffraction

A single slit of width a is illuminated by an off-axis source. The light from the source has wavelength
λ and hits the slit at an angle θ0. Our goal in this problem is to find out how the single-slit diffraction
pattern at a distance screen is changed by having the source off-axis (compared to the “regular” setup
where θ0 = 0).

(a) Consider the slit to be N small slits spaced a distance d = a/N apart, where N is very large. The
waves emerging from the various slits do not start in phase, since the light from the source had
to travel different distances to reach them. Assuming that the light arrives at the top slit (n = 0)
with phase φ0, find the phase of the light that arrives at the bottom slit (n = N − 1) in terms of
θ0, φ0, a, and λ.

(b) Generalize your result from (a) to find the phase at the nth slit φn. The n
th slit is at a distance

n
N
a below the top slit. Write your answer in the form φn = φ0 + n∆φ. Express ∆φ in terms of θ0,

φ0, a, l, and N (as needed).

(c) Now use the φn to find the intensity I(x) at the screen due to the N slits. [Hint: Follow the

procedure used in section 3.2.1 of the Notes, but this time the φ’s are not all equal.]

(d) Take the limit N → ∞ to find the intensity at the screen due to the slit of width a. A correct
result cannot have any n’s or N ’s in it (why not?). Check your result for the special case θ0 = 0.

(e) Explain how the intensity pattern differs from the pattern in the “regular” setup. At what angle
θ does the “central” maximum appear?

2 Diffraction at Different Wavelengths

Young & Freedman, Problem 38-6.



3 Multiple Finite Slits

The graph in Figure 1 shows the intensity (in arbitrary units) as a function of position (y) on a screen
which is 1.00 m from an aperture illuminated at normal incidence by laser light of wavelength 0.628
µm. The aperture consists of some number of equally spaced, equally wide slits. Determine the number
of slits N , the slit width a, and the center-to-center slit separation d.

Figure 1: Intensity on the screen from multiple finite slits.

4 Energy in Pulses

In the following three problems, “The Pulse” refers to the pulse shown on Figure 2 (a snapshot at
t = 0). In each problem, The Pulse is initially moving down the string to the left at wave speed c. The
string does not necessarily end at x = 0. Be sure to plot carefully and label numerical values on the
axes.
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Figure 2: The Pulse.

4.1 Change in Medium

The Pulse is headed at speed c = 100 m/s toward a change in medium at x = 0. The string does not
end at x = 0; rather, it is tied to a more massive string at x = 0 such that µ′ = 9µ (where µ is the
linear mass density for x > 0 and µ′ is the linear mass density for x < 0).

(a) Plot the snapshots for t = 0.06 s and 0.12 s;

Hint: Draw the 0.12 s snapshot first.

(b) Find the total energies of the incoming, reflected and transmitted pulses. Verify that
energy is conserved.

4.2 Reflection

The Pulse moves on a string with µ = 0.001 kg/m and τ = 10 N. The string ends at x = 0.

(a) At t = 0, plot the kinetic energy density ke(x), the potential energy density pe(x), the
total energy density e(x), and the instantaneous power P (x);

(b) How does e(x) compare with P (x)?

Hint: How fast does energy move along the string?

(c) What is the power at x = 0 as a function of time if the string has a fixed end there?
Explain your result in terms of energy conservation.

(d) Repeat (c) if x = 0 is a free end .

4.3 Perfect Absorber

Suppose The Pulse is moving at c = 100 m/s toward x = 0, at which point this ”perfect absorber” has
been set up; in other words the string ends at x = 0 and the endpoint is attached to a dashpot with
just the right value of b to completely absorb The Pulse. (This value can be computed in the same way
for string as was done for sound in Problem 5 of Problem Set #7. The answer is: b = τ/c =

√
τµ.)

(a) Plot P (t), the power as a function of time , at the endpoint x = 0.

(b) The rate at which energy is dissipated by the dashpot is Pd = Fyvy, where Fy is the viscous
drag force and vy the y-velocity of the endpoint (i.e., of the piston). Is P (t) = Pd(t)? Explain

briefly , based on energy conservation .
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5 Infinite Square Well Potential

A particle of mass m is confined to a inpenetrable box of length 2a. The box can be modeled by a
square well potential of infinite depth, as the one shown on Figure 3.
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Figure 3: Infinite square well potential.

(a) Draw the wavefunctions of the three lowest-lying energy eigenstates .

(b) Find the energies of the three lowest-lying energy eigenstates of the particle.
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Figure 4: Square wells of different width versus particles of different masses.

(c) Which two of the configurations shown on Figure 4 have the same ground state energies?
(“ground state” = the state of the lowest energy in a given system)

6 Step in a Box

A particle of mass m is trapped in an infinite square well potential with a finite step in the middle.
The width of the well is a and the step (of height V0) is at x = a/2. (See Figure 5.) The height of the
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step is such that the energy E for each of the lowest two natural states (so-called “eigenstates”) is less
than V0.
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Figure 5: Infinite square well potential.

(a) Compute the (time-independent) wavefunctions of the two lowest-lying energy eigen-

states of the particle.

(b) Compute the energies of the two lowest-lying energy eigenstates of the particle.

Hint: Look for solutions of the type ψ1(x) = A1e
ikx + B1e

−ikx in the left region (x < a/2) and ψ2(x) =

A2e
αx +B2e

−αx in the right region (x > a/2). Then, “glue” the wavefunctions smoothly together, i.e., impose

the requirements (BCs) that ψ(x) vanish at x = 0, a, and both ψ(x) and
dψ

dx
be continuous at x = a/2.

7 Finite Well

Now consider a particle of mass m confined in an finite square well potential of height V0 and width
a. (See Figure 6.)
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Figure 6: Finite square well potential.

(a) Compute the (time-independent) wavefunctions of the two lowest-energy states of the
particle.

Hint: Use the same strategy as in the previous problem. In this case the smoothness requirements (BCs)

are that both ψ(x) and
dψ

dx
be continuous at x = 0, a.
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(b) Write down the equations that the energies of the two lowest-energy states must

satisfy.

Hint: Some of the boundary conditions above will impose constraints on the wavevectors k =
√
2mE/~

and k′ =
√

2m(E − V0)/~, and thus on the energy E. As a result the energy can only take certain

discrete values, solutions to transcendental equations (e.g., x = tanx is a transcendental equation). Such

equations can only be solved numerically (or graphically). In this problem you are not required to solve

the equations; it is enough just to write them down.

8 Heisenberg uncertainty principle and the ground state en-

ergy of the Hydrogen atom

In this problem we will use the Heisenberg uncertainty principle and simple considerations involving
energy and momentum to estimate the ground state energy of the Hydrogen atom.

(a) Using the Heisenberg uncertainty principle, argue that if the separation of the electron

and the nucleus in the Hydrogen atom is of order r, then the momentum of the

electron is of order
~

r
.

(b) Write down the total energy of the electron as a function of r. Use your result of part

(a) to find the kinetic energy of the electron, and the Coulomb formula V (r) = −
1

4πε0

e2

r
for its

potential energy.

(c) Find the separation r0 at which the energy E(r) has a minimum. What is the value

Emin = E(r0)? How do your answers compare with the Bohr radius, rB, and the ground state
energy E1 of Hydrogen, given in Young & Freedman, eqs. (43-3) and (43-8)?

6


