Physics 214 Fall 2003

Exercise Problems # 3

1. Off-Axis Diffraction

A single slit of width a is illuminated by an off-axis source. The light from the source has wavelength
A and hits the slit at an angle 6,. Our goal in this problem is to find out how the single-slit diffraction
pattern at a distance screen is changed by having the source off-axis (compared to the “regular” setup
where 6, = 0).

(a)

Consider the slit to be N small slits spaced a distance d = a/N apart, where N is very large. The
waves emerging from the various slits do not start in phase, since the light from the source had
to travel different distances to reach them. Assuming that the light arrives at the top slit (n = 0)
with phase ¢,, find the phase of the light that arrives at the bottom slit (n = N — 1) in terms of
0y, ¢o, a, and .

Generalize your result from (a) to find the phase at the n'™ slit ¢,. The n'" slit is at a distance
+a below the top slit. Write your answer in the form ¢, = ¢, + nA¢. Express A¢ in terms of 6,
¢o, a, [, and N (as needed).

Now use the ¢, to find the intensity I(z) at the screen due to the N slits. [Hint: Follow the
procedure used in section 3.2.1 of the Notes, but this time the ¢’s are not all equal.|

Take the limit N — oo to find the intensity at the screen due to the slit of width a. A correct
result cannot have any n’s or N’s in it (why not?). Check your result for the special case 6, = 0.

Explain how the intensity pattern differs from the pattern in the “regular” setup. At what angle
f does the “central” maximum appear?

ANSWERS:

dN_1 = bo + kasinb, = ¢y + (2wa/N) sin b,.

¢n = ¢o +nk(a/N)sinb, = ¢, + (2rna/NA)sinb,. So, A¢p = (2ra/NA)sinb,. (This general expression
reproduces the result in (a) for very large N: ¢n_1 = ¢ + [k(N — 1)a/N]sin 6, N2 $ + kasin 6.)

The arguments of the sines in the N-slit formula have to be shifted by A¢:

sin? [J (kAR + A¢)]
sin? [§ (kAR + Ag)]

I(sin@) = I, AR = (a/N)sinf, A¢ = (ka/N)sinb, . (1)

Taking the limit in a similar way as in class gives:

sin? [£2(sin @ + sin 6,)]

I(sin6) = Iax
’ [k (sin + sint%)]2

If we plot the intensity I versus 6, the central maximum will appear at 8 = —6,.



2. Diffraction at Different Wavelengths:
Young & Freedman, Problem 38-6.

ANSWERS: (a) 2-10~* m; (b) 2 cm; (c) 2- 1077 m.

3. Multiple Finite Slits:

The graph shows the intensity (in arbitrary units) as a function of position (y) on a screen which is 1.00 m
from an aperture illuminated at normal incidence by laser light of wavelength 0.628 pym. The aperture consists
of some number of equally spaced, equally wide slits. Determine the number of slits N, the slit width a, and
the center-to-center slit separation d.

ANSWERS: The screen intensity I() for a diffraction pattern from multiple finite slits is given by the expres-
sion:
sin?(kAr /2 sin?(NkAR/2
r10) = (RSS2 ) (RSN 3
(kAr/2) sin“(kAR/2)
where Ar = kasinf and AR = kdsin . Looking at the picture, we therefore determine that:

e Since there are 4 secondary maxima between each two principal maxima, N = 6.

e The condition for a principal maximum is kAR = 2n7 or for n = 1, sinf; = % Then, d ~ 0_&%)\ &

42 pm.

e The height of the principal maxima is modified by the finite-slit pre-factor in (3). Comparing the heights

_ _ < . . Itn=1) _ sin’(ma/d) _ 1.36 _
of the n = 0 and » = 1 principal maxima on the plot, we obtain Tocoy = (ra/d)? — 18 — 0.76. The

ratio § = i satisfies this condition reasonably well. Thus, a = d/4 = 10.5 pm.

6. Step in a Box:
A particle of mass m is trapped in an infinite square well potential with a finite step in the middle. The
width of the well is a and the step (of height V;) is at z = a/2. (See Figure 1.)
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Figure 1: Infinite square well potential.

(a) Compute the (time-independent) wavefunctions of the two lowest-lying energy eigenstates of
the particle.

(b) Compute the energies of the two lowest-lying energy eigenstates of the particle.



Hint: Look for solutions of the type 1(z) = A1e?*® + Bie™*% in the left region (z < a/2) and 1(z) =
A2e®® + Boe~** in the right region (z > a/2). Then, “glue” the wavefunctions smoothly together, i.e., impose

d
the requirements (BCs) that v (z) vanish at z = 0, a, and both ¥(z) and i be continuous at z = a/2.

dx
ANSWERS: We look for solutions of the type:
P1(7) = A1e*® + Bre™™ (4)
Pa(z) = A2e™ + Boe 7, (5)

in the regions 1 and 2 respectively. These functions solve the Schrodinger’s equation if ¥ = v2mE /h and
a = +/2m(V, — E)/h. Applying the boundary conditions, we get:

P1(
Pa(

Using (6), we get 9, (z) = Cysinkz, where C; = 2iA;. Using (7), we get tho(z) = Co(e*(®~0) — g—lz—a))
where Cy = Aze*®. Now, impose BC’s at x = a/2:

0):0:>31:—A1, (6)
a) =0= By = —A262aa . (7)

T
T

Yi(z = a/2) = go(z = a/2) = Cysin(ka/2) = Cy(e */? — e*/?) (8)
P (z = a/2) = Ph(z = a/2) = kC cos(ka/2) = Coale™®Y? + /2 . (9)

Dividing Eqn. (8) by Equ. (9), we obtain a transcendental equation
tan(ka/2) _  tanh(aa/2)

k «@ ’
where the “hyperbolic tan” function is defined by

sinh(z) e*—e™®

cosh(z) et +e @’

tanh(z)

(11)

Using our expressions for k£ and «, we can express everything in the Eqn. (10) in terms of given quantities and
the unknown energy of the bound state, E. The two lowest energies will be the two smallest solutions to (10),
which can be found graphically or numerically. Below, we will assume that we have found E using one of these
methods, so that k and o are known.

Once k and « are known, we can substitute them into Eqn. (8) and express C5 in terms of C;. So, we get:

P1(x) = Cy sin(kz) (12)

a(z—a) —a(z—a)

— e
e—a/2 _ caa/2

) e
o(z) = C1 sin(ka/2) (13)
This gives the wavefunction, up to a single “normalization” constant (determining the vertical scale) Cy. This
constant is determined by the “normalization condition”,

a
2
/ do [p(@))? = 1. (14)
0

(This just says that the total probability of finding the particle somewhere in the well is equal to 1.) Given
this condition, it is straightforward (but tedious) to calculate Cp; you are not required to normalize your
wavefunctions correctly in this course, so you may leave C7 as an arbitrary constant in the answers.

7. Finite Well
Now consider a particle of mass m confined in an finite square well potential of height V;, and width a. (See
Figure 2.)
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Figure 2: Finite square well potential.

(a) Compute the (time-independent) wavefunctions of the two lowest-energy states of the particle.

Hint: Use the same strategy as in the previous problem. In this case the smoothness requirements (BCs)

d .
are that both v¢(z) and Ir be continuous at x = 0, a.
x
(b) Write down the equations that the energies of the two lowest-energy states must satisfy.

Hint: Some of the boundary conditions above will impose constraints on the wavevectors k = vV2mE /h
and k' = +/2m(E —V;,)/h, and thus on the energy E. As a result the energy can only take certain
discrete values, solutions to transcendental equations (e.g., x = tan z is a transcendental equation). Such
equations can only be solved numerically (or graphically). In this problem you are not required to solve
the equations; it is enough just to write them down.

ANSWERS: We look for solutions of the type:

P (z) = A e*1® 4 Bie7thiT | (15)
¢2($) — Azeikn + B2e—ik2w , (16)
3(z) = Aze™ ) 4 ByeHeleme) (17)

in the regions 1, 2, and 3 respectively, with k; = k3 = iy/2m(V, — E)/h = ix and ko = vV2mE /h. Note that
since we are looking for the lowest-energy bound states, we take £ < V, and the wavevectors in the regions
1 and 3 are imaginary. The exponents in (15) and (17) are therefore real and in order to ensure that the
wavefunction vanishes at infinity, we must set A; = Bs = 0. (The right-moving waves that penetrate region 3
and the left-moving waves that penetrate region 1 decay exponentially; there is no right-moving waves in region
1 and no left-moving waves in region 3.)

Applying the boundary conditions at z = 0 and = = a, we get:

P1(z =0) =92(z =0) = By = Ay + By, (18)
¢'1(m = 0) = ’(/112(.7,‘ = 0) = kB = ’ikg(AQ — B2) s (19)
P1(z = a) = Po(z = a) = Az = Age™™? 4 Bye F20 (20)
P (z = 0) = Yh(z = 0) = —kAz = iko(Aze™*2® — Bye~t29) (21)

We can solve Egs. (18-21) in terms of a single constant A (to be fixed by normalization):

By = 2iky A, (22)
Ay = A(iky + k) , (23)
By = A(iks — ) , (24)
As = 24 A(ko cos(kea) + ksin(kea)) . (25)



The wavefunctions are of the form (15-17) with By, As, By, and As given by (22-25) and ks,  can be obtained
once we know the value of the energy (recall that ko = vV2mE/h and k = /2m(V, — E)/h).
The energy can only have discrete values, solutions to the transcendental equation:

2]4)2,‘4}
k2 — k2

= tan(kea) . (26)

The two lowest energies will be the two smallest solutions to (26), and the two lowest states can be obtained
by substituting those values for the energy into (22-25) and (15-17).




