
Cornell University

Department of Physics

Phys 214 November 25, 2003

Waves, Optics, and Particles, Fall 2003

Homework Assignment # 11

(Due Thursday, December 4 at 5:00pm sharp.)

Agenda and readings for the week of December 1:

Skills to be mastered:

• Understand the wave nature of particles, be able to compute de Broglie wavelength for a particle of
known energy, momentum or velocity

• Use the particle-wave correspondence to predict the results of simple scattering and “diffraction”
experiments with electrons

• Understand and apply Heisenberg’s uncertainty principle

• Understand the motion of a particle in a box from quantum mechanical point of view

• Be able to solve Schrödinger’s equation for one-dimensional problems

• Use Schrödinger’s equation and Feynman’s “sum over histories” approach to study particle motion in
one-dimensional potentials

Lectures and Readings:

Readings marked YF are from the text Young and Freedman, University Physics, 10th edition. Readings
marked LN are from the course lecture notes to be found at http://people.ccmr.cornell.edu/˜muchomas/P214.

• Lec 26, 12/02 (Tue): Schrödinger’s equation and its solutions.
Readings: YF 42-1, 42-2, 42-3, 42-4. LN “Quantum III: Particle in a box . . . ,” Secs. 1.1–

1.6; LN “Quantum IV: Scattering Theory,” Sec. 4.

• Lec 27, 12/04 (Thu): Three Nobel Ideas
Readings: LN “Feynman diagrams, . . . ,” Secs. 3.4, 3.5, 4, 5.
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1 Davisson-Germer Experiment

In this problem, we will consider the experiment that was first performed in 1927 by C. Davisson and L.
Germer. This experiment has convincingly demonstrated the wave nature of electrons.

(a) An “electron gun” is a device in which electrons are created and accelerated by an electric field. The
electrons are emitted by the source with very small (essentially zero) velocities. The potential difference
between the source and the point where the electrons exit the gun is 750 V. Find the momentum
of electrons as they exit the gun. An electron has a mass m = 9.1 · 10−31 kg and electric charge
e = −1.6 · 10−19 C.

(b) According to de Broglie hypothesis, what is the wavelength of the electrons exiting the gun?

(c) A beam of electrons from the gun is directed at the surface of a nickel crystal. Electron velocities are
perpendicular to the surface. The crystal is an array of equally spaced Ni atoms, with two neighboring
atoms separated by d = 0.1 nm. Electrons hitting the atoms are reflected. Davisson and Germer
studied how many electrons bounce off at different angles. Sketch the flux of electrons as a function of
the angle θ. Find the values of θ at which the electron flux is maximal.

HINT: The crystal acts like a “reflection grating” which was studied in problem set # 9, problem 2.
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Figure 1: Davisson-Germer experiment.

2 Heisenberg Uncertainty Principle

A beam of electrons with momenta p = 6.6 · 10−24 N·sec is directed at a slit of width a = 10 nm. The
electrons are then observed at a screen a distance D = 10 cm from the slit.

(a) What is the wavelength of the electrons? Is it smaller or larger than the width of the slit?
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Figure 2: Electron diffraction experiment.

(b) Sketch the flux of electrons as a function of the position on the screen y. (The point opposite the
center of the slit is at y = 0.) On the same sketch, show the flux you would expect if electrons did not

behave as waves.

(c) How far from y = 0 can one place an electron detector and still detect a non-zero flux?

HINT: Recall problem set # 9, problem 5 (“Alone in the Dark”.) Just like in that problem, you can
assume that flux is zero outside the central intensity maximum!

(d) Electrons hitting the screen away from y = 0 have a non-zero momentum in the y direction. Find
py of an electron hitting the screen at a point y. With the same assumption as in part (c), what
is the maximal value of the magnitude of this momentum, |py|? What is its minimal value? The
“uncertainty”, or spread, in py is defined as ∆py = max(|py|)−min(|py|). Find ∆py.

NOTE: Since the y component of the electron momentum does not change on the way from the slit to
the screen, ∆py can also be thought of as the uncertainty in the electron momentum at the moment
when it passes through the screen.

(e) Observing an electron on the screen, we do not know exactly its y coordinate when it passed through
the slit: it could be anywhere from −a/2 to a/2. Thus, the “uncertainty” in the position of the electron,
∆y, is equal to the width of the slit a. Show that the uncertainties in the coordinate of the electron
and its position satisfy the relation

∆y∆py = ~.

NOTE: Heisenberg uncertainty principle states that for any physical system, ∆(coordinate)∆(momentum)
is at least ~/2.

(f) If the slit is made very narrow, a → 0, what is the expected uncertainty in momentum, ∆py? Based
on this result, sketch the expected flux of electrons as a function of the position on the screen for such
a narrow slit. Does the result agree with the expectation from our study of wave interference pattern
from one narrow slit?
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3 From Billiards to Nuclear Physics

(a) Solve Young & Freedman, problem 42-1, parts (a), (b), and (c).

(b) Solve Young & Freedman, problem 42-2.

(c) Using the results in parts (a) and (b), explain why quantum mechanical effects are important for
nuclear physics but not for the game of billiards.

4 Tunneling

A beam of particles of mass m and kinetic energy E < eV0 enter from the right, traveling from right to left,
toward a potential function V (x) of shape shown in Fig. 3.

(a) What is the momentum p of the incoming particles?

(b) Taking k = p/~, show that the wavefunction

Ψ>(x) = e−ik(x−a) + reik(x−a)

satisfies the Schrödinger’s equation for x > a, while the wavefunction

Ψ<(x) = te−ikx

satisfies the Schrödinger’s equation for x < 0. What is the physical meaning of r and t?

Note: In lecture on Dec. 2, we will show that the Schrödinger equation (equation of motion for the
wave function Ψ(x)) is

−
~2

2m

d2Ψ(x)

dx2
+ V (x)Ψ(x) = EΨ(x).

HINT: Recall problem set # 8, problem 1.

(c) Show that the wavefunction
Ψin(x) = Ce−αx + Deαx

satisfies the Schrödinger’s equation for 0 < x < a for any values of C,D. Determine α.

(d) Write down the equations that should be satisfied by the wavefunctions at x = 0 and x = a in terms
of the unknown coefficients C, D, t, r.
Note: In lecture on Dec. 2, we will show that the wave function Ψ(x) and its derivative dΨ(x)/dx are
always both continuous for finite potentials.

(e) By solving the equations obtained in part (d), find the coefficients r and t. What is the probability
that the incoming particle will pass the barrier (or “tunnel” through it)?
HINT: It is easiest to first solve for C and D in terms of t from the equation at x = 0, and then to
substitute the result into the equation you get from the boundary conditions at x = a.

5 Potential Well

The setup is the same as in the previous problem, except the potential V (x) now has the shape shown in
the figure 4 (V = +∞ for x < 0.) Again, the wavefunction at x > a is given by

Ψ>(x) = e−ik(x−a) + reik(x−a).

We will obtain the coefficient r using two different methods.

HINT: This problem is very similar to problem 2 on problem set # 8!
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Figure 3: Tunneling.

5.1 Matching on the boundary

(a) Show that the function
Ψin(x) = Ce−ik0x + Deik0x

satisfies the Schrödinger’s equation for 0 < x < a for any values of C,D. Determine k0.

(b) What is the boundary condition that should be satisfied by Ψin(x) at x = 0? Use this boundary
condition to simplify Ψin(x).

(c) Write down the equations that should be satisfied by the wavefunctions at x = a. Solve these equations
to obtain r.

5.2 Sums over histories

As for waves on a string, we can define “transmission” and “reflection” coefficients at a boundary between
regions (in our case, at x = a) with different potential energies and thus different wave vectors k1 and k2.
For a wave going from Region 1 to Region 2 the coefficients are1

R1→2 =
k1 − k2

k1 + k2

T1→2 =
2k1

k1 + k2

R2→1 =
k2 − k1

k1 + k2

T2→1 =
2k2

k1 + k2

(a) What is the wavefunction at x = a of the wave that was reflected from the boundary of the potential
well without entering into it? What about the wave that entered the potential well, was reflected from
the infinite potential wall at x = 0, and then escaped from the well?

(b) Generalizing your result from part (a), obtain the wavefunction at x = a of the wave moving from left
to right in the region outside the potential well by summing over all possible back-and-forth reflections
within the well. Use this result to obtain r.

1These results will be derived in the lecture on 12/02. Compare them with the corresponding coefficients for a wave on a
string!
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Figure 4: Potential well.

5.3 Getting Stuck

Using your results above, find the probability that an incoming particle will get stuck in the potential well.
HINT: First compute the probability that the particle will be reflected by the wall/well combination of

this problem.

6


