
Physics 214 Fall 2003

Homework Assignment #5 Solutions
by Lisa Larrimore

1 Particle histories versus snapshots

(a) & (b) These snapshots will be easier to sketch if we rewrite the solution for the wave as

y(x, t) = <{Aei(kx−ω0t)} = |A| cos(kx − ω0t − φ). (1)

Since A = (4 − 3i) × 10−2 m, we know that |A| = 0.05 m and φ = − tan−1 3
4 . We are also

given that k = 3.14 m−1 and ω0 = 31.4 s−1. To plot y at fixed t, we just fix the t in Eq. (1)
to 0 s for (a) and 0.04 s for (b), giving the graphs shown.

To estimate the speed of the wave, we notice that in 0.04 seconds, the first maximum has
traveled about 0.4 m (from 0.2 m to 0.6 m), and thus

v =
distance

time
=

0.4 m

0.04 s
= 10 m/s. (2)

This is the same result obtained using v = ω0/k.

(c) To sketch a particle history, y(t) at fixed x, we just fix x in Eq. (1) to be 1 meter, giving
us the graph shown.
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2 Frequency of spring waves

(a) The lowest frequency standing wave for boundary conditions with both ends fixed is the
one with λ = 2L. Using this and the fact that τ = K(L − L0), we can express the angular
frequency as

ω = kc =
2π

λ
c =

2π

2L

√

τ

µ
=

π

L

√

K(L − L0)

M/L
= π

√

K(L − L0)

ML
. (3)

(b) We can now take the limit as L � L0:

lim
L�L0

ω = π

√

KL

ML
= π

√

K

M
, (4)

which is independent of the length L.

3 Damped boundary conditions and normal modes

(a) We want to apply
∑

~F (ext) = m~a(c of m) (5)

to the ring at x = 0 in Figure (1) on the problem set. Since the ring has zero mass, the
right hand side is zero, so the sum of the external forces must be zero. Applying this to the
x-component of the external forces simply tells us that N = τ . The y-component, however,
gives us

∑

Fy = −b
∂y(x = 0, t)

∂t
+ τ

∂y(x = 0, t)

∂x
= 0, (6)

resulting in the relation

b
∂y(x = 0, t)

∂t
= τ

∂y(x = 0, t)

∂x
. (7)

(b) In the limit b/τ → 0, Eq. (7) becomes ∂y(x=0,t)
∂x

= 0, which is the condition for a free
boundary condition. Since the other side of the string also has a free boundary condition,
the allowed wave vectors for normal modes are k = nπ

L
.

(c) In the limit b/τ → ∞, Eq. (7) becomes ∂y(x=0,t)
∂t

= 0, which is the condition for a fixed
boundary condition. The allowed wave vectors are k = 2π

L

(

n
2 − 1

4

)

, as determined in lecture.

(d) The standing wave y(x, t) = A0 sin(kx + φ0) cos(ωt) cannot satisfy Eq. (7) for any value
of b other than 0 or ∞. The left hand side of Eq. (7) at fixed x would be proportional to
sin(ωt), and the right hand side would be proportional to cos(ωt), so the two sides could not
be equal for all t unless one side is equal to zero.

We can understand this by considering conservation of energy. The drag force ~F = −b~v is
a non-conservative force, which means that energy is lost (to heat, etc.) as it acts. If energy is
lost, the amplitude of oscillation will decay away to zero, which means that the expression for
y(x, t) does not describe the wave for all t, and it is therefore not a solution to the equation
of motion. The general standing wave can only satisfy the equation of motion if energy is not

lost to the drag force, which means that either b has to be zero or ~v has to be zero (b has to
be infinite).
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4 Sound waves

(a) Y&F 19-19: For this problem, we just need to plug numbers into the formula B = ρ0c
2.

19a) B = ρ0c
2 = ρ0(λf)2 = (1300 kg/m3)[(8 m)(400 Hz)]2 = 1.3 × 1010 Pa. (8)

19b) B = ρ0c
2 = ρ0(L/t)2 = (6400 kg/m3)[(1.5 m)/(3.9 × 10−4 s)]2 = 9.4 × 1010 Pa. (9)

(b) Equation 11 from Section III of the class notes tell us that

P (x) = P0 − B
∂s

∂x
. (10)

We want P (x) to change by ±0.1P0, which means P (x) oscillates between 1.1P0 and 0.9P0.
Under these conditions, Eq. (10) becomes ±0.1P0 = −B ∂s

∂x
. B can be easily calculated as in

part (a):
B = ρ0c

2 = (1.3 kg/m3)(344 m/s)2 = 1.5 × 105 Pa. (11)

We also need ∂s
∂x

:
∂s

∂x
= A0k cos(kx) cos(ωt), (12)

which has maximum and minimum values at ±A0k. The wave vector k is

k =
2π

λ
=

2πf

c
=

2π × 440 Hz

344 m/s
= 8.04 m−1. (13)

We are also given that P0 = 1.01× 105 Pa. We can now plug all these numbers in to find the
amplitude at which ±0.1P0 = −B ∂s

∂x
:

A0 =
0.1P0

Bk
=

0.1(1.01 × 105 Pa)

(1.5 × 105 Pa)(8.04 m−1)
= 0.8 cm. (14)

5 Prelim Practice: Standing Waves in Sound Tubes

The resonant frequency depends on both the size of the tube (you can play higher notes on a
little piccolo than on a flute) and on the density of the air inside (having your larynx full of
a light gas like helium makes your voice higher than when it is full of the air that is usually
around us). (Resonant frequency also depends on bulk modulus B, but that is fixed for these
tubes.) For a tube of length L with both ends closed, the lowest frequency corresponds to
λ = 2L. We can thus write the lowest resonant frequency as

f =
v

λ
=

1

λ

√

B

ρ
=

1

2L

√

B

ρ
. (15)

Note that the dependence on L and ρ is not the same – if you halve the length of the tube,
you need to quadruple the air density in order to keep the same resonant frequency. This is
exactly what is changed between tubes A and C, so that is the correct answer. Note that B
will have a lower frequency and D will have a higher frequency than both A and C.
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6 Prelim Practice: Sound Waves versus Waves on a String

We first need to remember the similarities between string waves and sound waves. The
vertical displacement y of the string corresponds to the horizontal displacement s of a chunk
of air in a sound wave. The mass density µ of a string corresponds to the mass density ρ0 of
the air (or other medium) in which the sound is propagating. Finally, the tension τ on the
string corresponds to the bulk modulus B; they both describe the “stiffness” of the system.

Now, we simply make these substitutions to turn the conservation of energy equation for
strings into one for sound:

−
∂

∂x

[

B
∂s

∂x

∂s

∂t

]

+
∂

∂t

[

1

2
B

(

∂s

∂t

)2

+
1

2
ρ0

(

∂s

∂t

)2
]

= 0. (16)

7 Prelim Practice: Generalized Boundary Conditions for a Sound Wave

(a) We want to determine all the forces acting on the piston when it is at position x. There
are no long-range forces (except for gravity, which is in the y-direction), so we only need to
consider contact forces. We have a force from the spring equal to −k(x − xeq) = −kx (since
we have set xeq to be our origin). We also have the pressure of the air on both sides pushing
on the piston. The air outside has pressure P0, and the air inside has pressure P (x, t). Since
we are considering small amplitude waves and are allowed to ignore the length of the tube,
we can approximate P (x, t) ≈ P (x = 0, t). The free body diagram from these forces is then:

(b) Since the piston is massless, Newton’s Second Law tells us that the sum of the external
forces on the piston must be zero:

0 =
∑

Fx = −kx + A [P0 − P (x = 0, t)] (17)

We are not allowed to have P (x = 0, t) in our final solution, so we rewrite it using the
constitutive relation for sound,

P (x, t) = P0 − B
∂s(x, t)

∂x
. (18)

Substituting this into Eq. (17) gives our equation of motion:

kx = AB
∂s(0, t)

∂x
. (19)
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