

Cornell University

Department of Physics

Phys 214

November 15, 2004

Waves, Optics, and Particles, Fall 2004

Homework Assignment # 10

(Due Thursday, November 18 at 5:00pm *sharp.*)

Agenda and readings for the week of November 17:

Skills to be mastered:

- Be able to compute potential, kinetic and total energy densities and power for a string or for a sound wave, given the wave solution
- Understand conservation of energy in wave motion
- Be able to compute electric and magnetic energy densities in an electromagnetic wave
- Be able to compute power flux for a plane E&M wave
- Understand the concept of intensity of an E&M wave and its relation to the power flux and the complex amplitude of the wave.

Lectures and Readings:

Readings marked YF are from the text Young and Freedman, *University Physics*, 11th edition.

- Lec 23, 11/16 (Tue): Introduction to Quantum Mechanics, G.P. Thomson experiment.
Readings: YF 39.1.
- Lec 24, 11/18 (Thu): Analysis of G.P. Thomson experiment, measurement of \hbar , de Broglie hypothesis.
Readings: YF 39.2.
- Lec 25, 11/23 (Tue): Heisenberg Uncertainty Principle.
Readings: YF 39.3.
- Lec 26, 11/30 (Tue): Particles in a box; Schrödinger's equation.
Readings: YF 39.5, 40.1–40.3.
- Lec 27, 12/02 (Thu): Three Nobel Ideas.
Readings: LN “Feynman Diagrams . . .,” Secs. 3.4, 3.5, 4, 5.

1 Energy in a Standing Sound Wave

Consider a standing sound wave in a thin tube of cross-sectional area A with two open ends at $x = 0$ and $x = L$:

$$s(x, t) = S_0 \cos(kx) \cos(\omega t).$$

The bulk modulus and density are B and ρ_0 , respectively.

- (a) Find the kinetic energy density, $ke(x, t)$, and the potential energy density, $pe(x, t)$. Is it true that $ke(x, t) = pe(x, t)$?
- (b) What is the total energy density, $e(x, t)$? Does it depend on time?
- (c) What is the total energy in the standing wave? Does it depend on time?
- (d) Find the power $P(x, t)$ (the rate at which energy flows past point x). [Careful: the quantity $\mathcal{P} \equiv -B \frac{\partial s}{\partial x} \frac{\partial s}{\partial t}$ is the instantaneous power *per unit area*, so the power is $P = \mathcal{P}A$.]
- (e) Let \mathcal{P} represent the instantaneous power per unit area. Show that the equation

$$\frac{\partial e}{\partial t} = -\frac{\partial \mathcal{P}}{\partial x}$$

holds at all x and t . What is the physical meaning of this equation?

- (f) At what times t is the total kinetic energy of the sound wave a maximum?
- (g) At what times t is the total potential energy of the sound wave a maximum?
- (h) What is the power as a function of time at a node?
- (i) What is the power as a function of time at an antinode?
- (j) What are the implications of your answers to (h) and (i) for energy transport in the wave?

2 Intensity of Light

Consider a plane, linearly polarized electromagnetic wave in a dielectric described by ϵ and μ . Using complex representation, the fields in the wave are given by

$$\begin{aligned} \vec{E}(z, t) &= \Re(\underline{E}_0 e^{ikz} e^{-i\omega t}) \hat{x}, \\ \vec{B}(z, t) &= \frac{1}{c} \Re(\underline{E}_0 e^{ikz} e^{-i\omega t}) \hat{y}, \end{aligned} \quad (1)$$

where $c = 1/\sqrt{\epsilon\mu}$.

- (a) Compute the densities of electric field energy u_E and magnetic field energy u_B as functions of z and t . Simplify your answers so that they do not contain any complex numbers.
- (b) Compute the total energy density $u(z, t) = u_E(z, t) + u_B(z, t)$.
- (c) Compute the power flux vector (usually called “Poynting vector” in electromagnetic theory) $\vec{S}(z, t) \equiv \frac{1}{\mu} \vec{E} \times \vec{B}$. Which direction is energy flowing in? Express the z -component of the Poynting vector, $S_z(z, t) \equiv \vec{S}(z, t) \cdot \hat{z}$, in a form that does not contain any complex numbers.
- (d) Show that $S_z(z, t)$ and $u(z, t)$ satisfy a continuity equation of the expected form.

3 Energy in Pulses I

A pulse moving in the $+x$ direction on a string has shape at $t = 0$ given by $y(x, t = 0) = f(x)$.

(a) Show that the total energy of the pulse is

$$E_0 = \int_{-\infty}^{+\infty} \tau [f'(x)]^2 dx$$

How much of the energy is kinetic and how much is potential?

(b) Suppose a pulse on the same string had the same shape but the amplitude was scaled by a factor a . In other words, at $t = 0$ the shape is given by $y(x, t = 0) = af(x)$. What is the energy of this pulse in terms of E_0 ?

(c) Suppose a pulse on the same string had the same shape and amplitude as the original pulse but was stretched horizontally by a factor b . In other words, at $t = 0$ the shape is given by $y(x, t = 0) = f(x/b)$. What is the energy of this pulse in terms of E_0 ?

4 Energy in Pulses II

Two half-infinite strings are connected at $x = 0$. The wave speed for $x < 0$ is c_1 and the wave speed for $x > 0$ is c_2 . A pulse is coming from the left toward $x = 0$. The shape of the incident pulse at $t = 0$ is $y(x, t = 0) = f(x)$. The total energy of the incident pulse is

$$E_i \equiv \int_{-\infty}^{+\infty} \tau [f'(x)]^2 dx$$

After a while, reflected and transmitted pulses are moving away from $x = 0$.

(a) Compute the total energy E_r of the reflected pulse. Express your answer in terms of E_i , c_1 , and c_2 .
[Hint: use what you learned in the previous problem.]

(b) Compute the total energy E_t of the transmitted pulse. Express your answer in terms of E_i , c_1 , and c_2 . Verify conservation of energy.

5 The propagation decay factor $p(r)$

In class, we talked about a propagation decay factor $p(r)$ that describes how the amplitude of a wave decreases with distance r from the source. We wrote the complex amplitude of a wave as

$$\underline{Q}(r) = p(r) e^{ikr}$$

where e^{ikr} is the phase factor for propagating a distance r .

(a) Suppose a point source radiates waves isotropically (equally in all directions). How do you expect the rate of energy flow through a spherical surface at distance r_1 from the source to compare to the rate of energy flow through a spherical surface at distance $r_2 > r_1$?

(b) The intensity I is the rate of energy flow through a surface per unit area (power per unit area). Based on your answer to (a), how does I depend on r ?

(c) The intensity is proportional to the square of the amplitude of the wave: $I(r) \propto |\underline{Q}(r)|^2$. How does $p(r)$ depend on r ?

(d) Challenge: For waves traveling in two dimensions (such as vibrations traveling away from a point source on a thin membrane or sheet), how do you expect $p(r)$ to depend on the distance r from the source? Explain.

(e) For waves traveling in one dimension (such as transverse waves traveling away from a point source on a string), how do you expect $p(r)$ to depend on the distance r from the source? Explain.

6 Energy transport in a plucked guitar string

At $t = 0$, a guitar string fixed at both ends ($x = 0$ and at $x = L$) is plucked at its midpoint so that its initial shape is an isosceles triangle (Fig. 1) and its initial velocity is zero everywhere. The tension in the string is τ and the wavespeed is v . In Problem Set 7, we figured out how to predict the future shape of the string. Now we are going to look at energy transport.

- (a) What is the total energy in the last quarter of the string (from $x = 3L/4$ to $x = L$) at $t = 0$?
- (b) What is the total energy in the last quarter of the string (from $x = 3L/4$ to $x = L$) at $t = L/(2v)$?
- (c) Sketch a graph of the power P as a function of time at the point $x = 3L/4$ between $t = 0$ and $t = L/(2v)$.
- (d) Integrate $P(x = 3L/4, t)$ with respect to time from $t = 0$ to $t = L/(2v)$ to find the energy that enters the last quarter of the string during that time interval. Is your answer consistent with your answers to (a) and (b)? Explain.

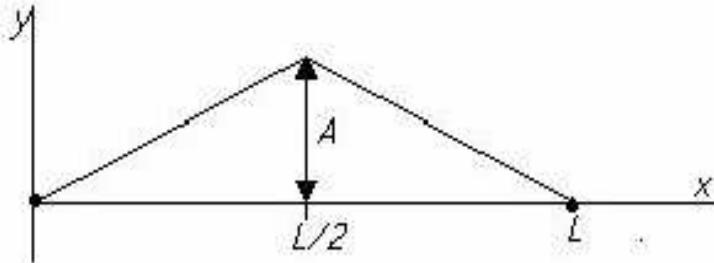


Figure 1: Initial shape of a plucked guitar string.