
Physics 214 - Problem Set 3 - Solutions

1 Resonance for an unusual oscillator

A =
F0

k − mω2 − iCω3
=

F0

m(ω2
0 − ω2) − iCω3

(a) The amplitude of the oscillator, as a function of w, is the magnitude of
the complex number A:

A(ω) = |A(ω)| =

∣

∣

∣

∣

F0

m(ω2
0 − ω2) − iCω3

∣

∣

∣

∣

=
|F0|

√

(m(w2
0 − ω2))2 + (Cω3)2

(b) Yes! The resonance is the peak around ω0 = 100s−1:

A(ω) in meters vs. ω in inverse seconds

2 Seismograph

a) The equation of motion is

ma =
∑

F

= spring force + damping force

Since “the spring force and the damping force depend on the displacement and
velocity relative to the earth’s surface,” the equation becomes

ma = −ky − γm
dy

dt
.

If you are wondering what happened to the gravitational force, it is actually
included in −ky. The constant force due to gravity just shifts the equilibrium
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point down a distance mg/k. In writing −ky rather than −k(y − yeq), we have
chosen the origin to be at this equilibrium point.
Now, the “dynamically significant acceleration is the acceleration of M relative
to the fixed stars.” This means that

a =
d2

dt2
(y + η) .

Now substitute for a.

m
d2

dt2
(y + η) = −ky − γm

dy

dt

Finally, introduce ω2
0 = k/m and rearrange the terms.

d2y

dt2
+ γ

dy

dt
+ w2

0y = −d2η

dt2

b) Let η = C cos(wt) to get

d2y

dt2
+ γ

dy

dt
+ ω2

0y = −ω2C cos(ωt).

Now generalize to a complex differential equation (cos(ωt) → eiωt).

d2y

dt2
+ γ

dy

dt
+ ω2

0y = −ω2Ceiωt.

Guess a solution of the form y = Aeiwt. Substituting for y transforms the
differential equation into an algebraic equation.

(−ω2 + γiω + ω2
0)Aeiωt = −ω2Ceiωt

After canceling the eiωt, the equation may be solved for A.

A =
−Cw2

−ω2 + γiω + ω2
0

The trial solution y = Aeiωt will work. The solution to the original real differ-
ential equation is the real part of y:

physically significant solution = ℜ y = ℜ
( −Cw2

−ω2 + γiω + ω2
0

eiωt

)

c) For a graph of |A| = |w2C|√
(w2

0
−w2)2+(γω)2

, we need to choose values for C, ω0,

and γ. However, it is more instructive to plot the normalized quantities A/C
and ω/ω0. Then all we have to choose is the value of γ/ω0 ≡ 1/Q. From part
(d), a realistic value of Q is 2. Below, we show the normalized plots for Q = 1,
2, and 3.
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A normalized plot of |A(ω)|/C vs. ω/ω0 for Q=1, 2, 3.

d) Suppose the natural period of the seismograph with Q = ω0/γ = 2 is T0 =
30s. Suppose the earth shakes with a period T = 20min = 20 × 60s = 1200s
and with a maximum acceleration of 10−9m/s2. The question is asking for the
amplitude of the oscillator.

First find the angular frequency of the earth’s vibration

T = 1200s → ω =
2π

T
=

2π

1200s
= 0.005s−1

The natural frequency is

w0 =
2π

T0
=

2π

30s
= 0.209s−1.

and the damping constant is

γ =
w0

Q
=

0.209s−1

2
= 0.105s−1.

The amplitude is then

|A| =
|Cw2|

√

(w2
0 − w2)2 + (γω)2

=
10−9m/s2

√

((0.209s−1)2 − (0.005s−1)2)2 + (0.105s−1 × 0.005s−1)2

= 2.29 × 10−8m.
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3 Energy in a driven oscillator

x(t) = A cos(ωt + φ0)

A =
F0/m

√

(ω2 − ω2
0)2 + (bω)2

φ0 = − arctan
bω

ω2
0 − ω2

f = −bmv

F (t) = F0 cos(ωt)

For reference:

v(t) =
dx

dt
(t) = −ωA sin(ωt + φ0)

(a) Power dissipated by the damping force

Pf = f · v = −bmv · v = −bm (−ωA sin(ωt + φ0))
2

= −bmω2A2 sin2(ωt + φ0)

(b) Since < sin2 >= 1
2

< Pf >= −1

2
bmω2A2

(c) PF

PF = F · v = F0 cos(ωt) · −ωA sin(ωt + φ0) = −F0Aω cos(ωt) sin(ωt + φ0)

(d)

PF = −F0Aω cos(ωt) (sin(ωt) cos(φ0) + cos(ωt) sin(φ0))

= −F0Aω cos(ωt) sin(ωt) cos(φ0) − F0Aω cos(ωt) cos(ωt) sin(φ0)

After noting that cos(ωt) sin(ωt) = 1
2 sin(2ωt) averages to zero, the average

value is:

< PF >= −1

2
F0Aω sin(φ0)

(e) Conservation of energy would suggest that

< Pf > + < PF >= 0

or
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−1

2
bmω2A2 − 1

2
F0Aω sin(φ0) = 0

The trick is to realize that

sin(φ0) =
−bω

√

(ω2 − ω2
0)2 + (bω)2

.

This comes from φ0 = − arctan bω
ω2

0
−ω2

. Substituting gives:

−1

2
bmω2A2 − 1

2
F0Aω

(

−bω
√

(ω2 − ω2
0)2 + (bω)2

)

= 0

or

−1

2
bmω2A2 − 1

2
F0Aω

(

−bAmω

F0

)

= 0

4 Conversion of wave quantities

(a) Given: v = 2.5m/s and λ = 7.5m

λf = v → f = v
λ = 2.5m/s

7.5m = 0.333s−1

κ = 1/λ = 1/7.5m = 0.133m−1

k = 2πκ = 2π × 0.133m−1 = 0.838m−1

ω = 2πf = 2π × 0.333s−1 = 2.094s−1

b) We need to convert frequency (f) to wavelength (λ = v/f). The conver-
sion factor is the speed of sound at 20 degrees Celsius (v = 343.6m/s)1.

λ(20Hz) =
343.6m/s

20Hz
= 17.18m

λ(20, 000Hz) =
343.6m/s

20, 000Hz
= 1.718cm

5 Plucking a harpsichord string

xleft = 20cm

xright = 160cm

xleft + xright = 180cm

y = 0.4cm

(a) There are (at least) two ways to interpret this question that give very
nearly the same answers. One is to assume that when the plectrum lifts the

1
see http://hyperphysics.phy-astr.gsu.edu/hbase/sound/souspe.html
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string, the string slips over the plectrum, allowing the hypotenuse to increase a
bit. In this case, the plectrum moves straight up and the slopes are

sleft =
y

xleft
= 0.02000

sright = − y

xright
= −0.0025

Another way to interpret the problem is that the string doesn’t slip over the
plectrum. Thus, the plectrum shifts to the left ever so slightly along with the
chunk of string that it lifts. In this situation the exact slope on left is

sleft = tan(arcsin(
y

xleft
)) = 0.02000.

The difference between the two is very small! The new calculation of the slope
on the right uses the result from part b).

sright = − y

∆x + xright
= − .4cm

0.004cm + 180cm
= −0.0022

and again is close to the first method. [Sorry for invoking the result of part b,
we did not anticipate this type of solution for part (a). The point here is that
both methods agree because y is very small.]

(b) The change in position is (assuming the first situation where the string
slips a bit)

|∆x| = xinitial − xfinal

= xleft − xleft
xleft

√

y2 + x2
left

= xleft



1 − xleft
√

y2 + x2
left





= 20cm

(

1 − 20cm
√

(0.4cm)2 + (20cm)2

)

= 20cm (1 − 0.9998)

= 0.004cm

The second method where xleft becomes the hypotenuse is

|∆x| = xinitial − xfinal

= xleft −
√

x2
left − y2

= 20cm −
√

(20cm)2 − (0.4cm)2

= 0.004cm
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(c) In the small-amplitude approximation, we assume the amplitude of the
wave is small enough that motion of chunks in the x direction is negligible
compared to the motion in the y direction. Part (b) showed this for one chunk
of string. An equivalent way to look at it is to examine the slope of the string,
as in (a). As long as the slope everywhere is ≪ 1, the amount of string pulled
through the fictitious hole at the right end is small and, again, x motion is
negligible. (In the more realistic situation where the string is fixed at both
ends, the small-amplitude approximation also lets us assume that the tension
in the string is constant.)
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