Physics 214 - Problem Set 3 - Solutions

1 Resonance for an unusual oscillator

e Fy _ Iy
= k—mw?—iCw?® m(wi—w?)—iCw?

(a) The amplitude of the oscillator, as a function of w, is the magnitude of
the complex number A:

Fy _ |Fo|
- m(wg —w?) —iCw? |/ (m(wf — w?))? + (Cw?)?

(b) Yes! The resonance is the peak around wy = 1005~
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2 Seismograph

a) The equation of motion is

ma:ZF

= spring force + damping force

Since “the spring force and the damping force depend on the displacement and
velocity relative to the earth’s surface,” the equation becomes
ma = —ky — 'ym@.
dt
If you are wondering what happened to the gravitational force, it is actually
included in —ky. The constant force due to gravity just shifts the equilibrium



point down a distance mg/k. In writing —ky rather than —k(y — yeq), we have
chosen the origin to be at this equilibrium point.

Now, the “dynamically significant acceleration is the acceleration of M relative
to the fixed stars.” This means that

d2

azﬁ(

y+n).

Now substitute for a.

d? dy
M= (y+n)=—ky— yme

Finally, introduce w? = k/m and rearrange the terms.

d2y dy 2 d277
ae Py T e
b) Let n = C cos(wt) to get
d? d
Eg + ,ya% + wiy = —w?C cos(wt).

Now generalize to a complex differential equation (cos(wt) — e™?).

dy dy 201 i

— — +wiy = —wrCe™.

az g Ty

Guess a solution of the form y = Ae Substituting for y transforms the
differential equation into an algebraic equation.

Twt

(—w? + yiw + W) Ae™t = —w*Cett
After canceling the e™?, the equation may be solved for A.

—Cuw?

A _—_—Cw
T —w? + yiw + wi

The trial solution y = Ae'? will work. The solution to the original real differ-
ential equation is the real part of y:

2
—Cw eiwt)

hysically significant solution=Ry =R | ———
physically significant solution Y (—w2+7iw+wg

|lw2C|
and v. However, it is more instructive to plot the normalized quantities A/C
and w/wg. Then all we have to choose is the value of v/wg = 1/Q. From part
(d), a realistic value of @ is 2. Below, we show the normalized plots for @ = 1,
2, and 3.

c) For a graph of |4| = we need to choose values for C, wo,
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A normalized plot of |A(w)|/C vs. w/wy for Q=1, 2, 3.

d) Suppose the natural period of the seismograph with Q = wo/y =2 is Tp =
30s. Suppose the earth shakes with a period T = 20min = 20 x 60s = 1200s
and with a maximum acceleration of 10~%m/s2. The question is asking for the
amplitude of the oscillator.

First find the angular frequency of the earth’s vibration

2 2T

T = 1200 === = 0.005s "
ST T 12005 °
The natural frequency is
27 27
== — =10209s"".
YO T T 308 s
and the damping constant is
wo  0.209s7! .
=—=——"—=0.105s"".
Y 0 9 S
The amplitude is then
|Cw?|
4] = 2 2)2 2
V(wg —w?)? + ()
B 1079m/s?
v/((0.209s=1)2 — (0.0055=1)2)2 + (0.1055~ 1 x 0.0055~1)2
=229 x 10™%m.



3 Energy in a driven oscillator

x(t) = Acos(wt + ¢o)
Fo/m

A=
V=7 + (b

¢9 = — arctan W
f=—-bmv

F(t) = Fycos(wt)

For reference:

v(t) = %(t) = —wAsin(wt + ¢p)

(a) Power dissipated by the damping force

Py =f-v=—bmv-v=—bm(—wAsin(wt + $0))? = —bmw?A? sin®(wt + )
. .92
(b) Since < sin® >= 1
1 2 42
< Py >= —ibmw A

(c) Pr

Pp=F-v=Fycos(wt)  —wAsin(wt + ¢g) = —FpAw cos(wt) sin(wt + ¢o)

(d)

Prp = —FyAw cos(wt) (sin(wt) cos(¢g) + cos(wt) sin(¢p))
= —FpAw cos(wt) sin(wt) cos(¢g) — FyAw cos(wt) cos(wt) sin(¢g)

After noting that cos(wt)sin(wt) = 1 sin(2wt) averages to zero, the average

2
value is:
1 .
< Pp >= —iFko sin(¢o)
(e) Conservation of energy would suggest that

<Pf>+<PF>:0

or



1 1
—§bmw2A2 - iFko sin(¢p) = 0

The trick is to realize that

—bw
sin(¢o) = .
V(Ww? = wg)? + (bw)?
This comes from ¢y = — arctan wzbfWQ. Substituting gives:
0

—lbmuﬂA2 - lFko —hw =0
2 2 V(W? = wf)? + (bw)?

or

1 9.0 1 bAmw\
ibmw A gFko ( 7 =0

4 Conversion of wave quantities

(a) Given: v =2.5m/s and A = 7.5m

AM=v— f=2=20m5 — (33351

k=1/A=1/75m =0.133m~!

k=2nk =2m x 0.133m~! = 0.838m !

w=2nf =27 x 0333571 =2.0945!

b) We need to convert frequency (f) to wavelength (A = v/f). The conver-
sion factor is the speed of sound at 20 degrees Celsius (v = 343.6m/s)*.

_ 343.6m/s

343.6m/s

5 Plucking a harpsichord string

Ziepr = 20cm
Tright = 160cm
Tieft + Tright = 180cm
y = 0.4cm

(a) There are (at least) two ways to interpret this question that give very
nearly the same answers. One is to assume that when the plectrum lifts the

lsee http://hyperphysics.phy-astr.gsu.edu/hbase/sound/souspe.html



string, the string slips over the plectrum, allowing the hypotenuse to increase a
bit. In this case, the plectrum moves straight up and the slopes are

et = o= 0.02000
Spioht = ——2— — —0.0025
g Lright

Another way to interpret the problem is that the string doesn’t slip over the
plectrum. Thus, the plectrum shifts to the left ever so slightly along with the
chunk of string that it lifts. In this situation the exact slope on left is

)) = 0.02000.

Sieft = tan(arcsin(
Tleft
The difference between the two is very smalll The new calculation of the slope
on the right uses the result from part b).
Y Aem

rioht = — = — = —0.0022
Sright AT 4 Tright 0.004¢cm + 180cm

and again is close to the first method. [Sorry for invoking the result of part b,
we did not anticipate this type of solution for part (a). The point here is that
both methods agree because y is very small.]

(b) The change in position is (assuming the first situation where the string
slips a bit)

|A(E| = Tinitial — L final
Tleft

= Tleft ~ Tleft e
VY™ T Tieps

Tleft

\/ y2 + xIQeft

20cm
= 2em <1 - V/(0.4cm)? + (ZOcm)2>

= 20cm (1 — 0.9998)
= 0.004cm

=Ziep | 1—

The second method where x;.7; becomes the hypotenuse is

|Az| = Tinitial — T final

= Tieft = \/Tiepr — ¥

= 20cm — /(20cm)2? — (0.4¢m)?
= 0.004cm




(c) In the small-amplitude approximation, we assume the amplitude of the
wave is small enough that motion of chunks in the x direction is negligible
compared to the motion in the y direction. Part (b) showed this for one chunk
of string. An equivalent way to look at it is to examine the slope of the string,
as in (a). As long as the slope everywhere is < 1, the amount of string pulled
through the fictitious hole at the right end is small and, again, z motion is
negligible. (In the more realistic situation where the string is fixed at both
ends, the small-amplitude approximation also lets us assume that the tension
in the string is constant.)



