
Physics 214 Homework Assignment Eight Solutions

October 29, 2004

1 Michelson Interferometer with Microwaves

a) If we already register a maximum intensity with our interferometer and then move Reflector (1) along
Arm (1) in order to find another maximum, we must move the reflector a distance of λ/2. This is because a
change in reflector position of ∆X will result in a total path length change of 2∆X, and we want to change
this path length by one wavelength to find a successive maximum. Given the data: X = 20.0 cm, 23.5 cm,
26.5 cm, 30.0 cm and 33.4 cm, we find that the average ∆X is ∆Xave = 3.35 cm. Therefore the wavelength
is

λ = 2∆Xave = 6.7 cm (1)

b) In a space of a thickness l, we would normally be able to fit l/λ wavelengths of microwave. If we then
place a sheet of polyethylene with index of refraction n and thickness l in that space, the wavelength becomes
shorter by a factor of n, and thus we’d be able to fit nl/λ wavelengths in the same space (see Figure 1 on last
page). This gives us an overall shift by l(n− 1)/λ wavelengths for each pass through the polyethylene. The
phase difference introduced will be 2π for each extra wavelength and in our interferometer, the microwaves
will pass through this sheet twice. Therefore we will get a total phase difference of

∆φ =
4πl

λ
(n− 1) =

4π(0.60)
6.7

(1.6− 1) ≈ 0.68 rad (2)

c) Since you will get an extra bit of wavelength from the addition of the polyethylene, you will want to
shorten the path length that the wave will travel to compensate. This can be done by moving Reflector (1)
towards the partial reflector at the center.

d) Adding the polyethylene will cause an increase in the optical path length by l(n−1) for each pass through
the medium. The microwaves will pass through it twice. We will need to compensate by moving the reflector
towards the center by ∆X such that this change increases the path length by 2∆X. Therefore, in order to
reestablish zero phase difference

2∆X = 2l(n− 1) (3)

and therefore
∆X = l(n− 1) = (0.60 cm)(1.6− 1) = 0.36 cm (4)

2 Impedance Matching

a) For a sinusoidal wave traveling from the left and moving to the right, with a massless slip ring attached
to a dashpot at x = 0, we have the solution

y0(x ≤ 0, t) = <
[
Ae−iωt

(
eikx + Re−ikx

)]
(5)
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The first term in the above equation corresponds to the incoming wave which is moving in the positive
x-direction. The second term corresponds to the wave which is reflected back in the negative x-direction by
the ring-dashpot system.

b) The ring has two forces acting on it: the tension force from the string to its left and the drag force from
the dashpot. These are

Fstring = −τ
∂y(0, t)

∂x
(6)

and

Fdrag = −bvy(0, t) = −b
∂y(0, t)

∂t
. (7)

Newton’s force law tells us that
∑−→

F = m−→a , and since m = 0 for the ring∑−→
F = −τ

∂y(0, t)
∂x

− b
∂y(0, t)

∂t
= 0 (8)

c) Now we can simply plug our solution into the above boundary condition. The partial derivatives will be

∂y(0, t)
∂x

= <
[
Ae−iωt (ik − ikR)

]
(9)

and
∂y(0, t)

∂t
= <

[
−iωAe−iωt (1 + R)

]
, (10)

and these give us the boundary condition

<
[
−ibωAe−iωt (1 + R) + ikτAe−iωt (1−R)

]
= 0. (11)

Factoring out the iAe−iωt, we find that this expression is only zero for all times if

−bω (1 + R) + kτ (1−R) = 0 (12)

and, solving for R, this gives us

R =
kτ − bω

kτ + bω
=

zω − bω

zω + bω
=

z − b

z + b
(13)

d) Using our result for the reflected wave’s complex amplitude

R =
z − b

z + b
(14)

we see that when b = z, R = 0 and thus we get no reflected wave. In other words, we get no reflection if we
impose ”impedance matching” by making the damping coefficient match the impedence of the string: b = z.
In this situation, all of the energy in the wave is dissipated by friction in the dashpot. This is one example
of impedance matching, where we match the impedances in order to get zero reflection from an interface.

3 Reflection and Transmission with an Attached Dashpot

a) Now if we change the situation in problem (2) by tying string to both sides of the slip ring, we get the
following solution

y0(x ≤ 0, t) = <
[
Ae−iωt

(
eikx + Re−ikx

)]
(15)
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y1(x ≥ 0, t) = <
[
Ae−iωt

(
Teikx

)]
(16)

The first term of y0 is the incident wave and the second term is the reflected wave; y1 is the transmitted
wave, which will travel past the slip ring and continue on in the positive x-direction.

b) At the point x = 0, we must have
y0(0, t) = y1(0, t) (17)

because the solutions must match at the ring due to the continuity of the string through this point, as in
the lecture notes.

c) Now the ring has three forces acting on it: the tension force from the string on the left, the tension force
from the string on the right and the drag force from the dashpot. These are, respectively,

Fleft = −τ
∂y0(0, t)

∂x
, (18)

Fright = τ
∂y1(0, t)

∂x
(19)

and

Fdrag = −bvy = −b
∂y1(0, t)

∂t
(20)

where we could have similarly used y0 to calculate the velocity used in the drag force equation. The sum of
the forces will be equal to zero since the ring is massless and hence

τ

(
∂y1(0, t)

∂x
− ∂y0(0, t)

∂x

)
− b

∂y1(0, t)
∂t

= 0. (21)

d) Using the boundary condition from part (b) and plugging in our solution tells us that

<
[
Ae−iωt (1 + R)

]
= <

[
Ae−iωtT

]
(22)

and we can bring everything into one <[ ] and factor out the Ae−iωt to find

1 + R = T . (23)

Plugging our solution into the second boundary condition (our differential equation from part (c)) tells us
that

<
[
τAe−iωtikT

]
−<

[
τAe−iωtik (1−R)

]
−<

[
−iωbAe−iωtT

]
= 0 (24)

and this simplifies to give
kτT − kτ (1−R) + ωbT = 0. (25)

We now have two equations and two unknowns. Solving for the unknowns, we find that

R = − b

2z + b
(26)

and
T =

2z

2z + b
(27)

e) As b → 0, R → 0 and T → 1. The system acts as a regular continuous string with no external force
applied at x = 0, so there is no reflection and the wave travels on with undiminished amplitude.

f) As b →∞0, R → −1 and T → 0. As the damping coefficient gets very large, it will not allow any motion
at all, so x = 0 approaches the behavior of a fixed end. The reflected wave is inverted and there is no
transmitted wave.
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4 Transmission and Reflection in Strings (II)

4.1 Matching at the Boundary

a) Using the boundary condition at x = 0, we know that

y0(0, t) = 0 (28)

and using our solution, this is tells us that

<
[
e−iωt (B + C)

]
= 0 (29)

and therefore
B = −C. (30)

Then the solution for y0 simplifies to

y0(x < a, t) = <
[
e−iωtB

(
e−ik0x − eik0x

)]
. (31)

Using the fact that
e−ik0x − eik0x = −2i sin(k0x) (32)

and defining
D = −2iB (33)

we get
y0(x < a, t) = <

[
e−iωtD sin(k0x)

]
. (34)

b) At the point x = a, the string is continuous and without any breaks. Therefore the two solutions should
match each other at that point

y0(a, t) = y1(a, t). (35)
We must also have force balance at the point x = a, which means that the total y-component of the tension
should be zero at the boundary

τ
∂y0(a, t)

∂x
= τ

∂y1(a, t)
∂x

. (36)

c) Plugging our solution into the first boundary condition tells us that

<
[
e−iωtD sin(k0a)

]
= <

[
Ae−iωt (1 + r)

]
(37)

and hence
D sin(k0a) = A (1 + r) . (38)

The second boundary condition tells us that

<
[
e−iωtDk0 cos(k0a)

]
= <

[
Ae−iωtik1 (r − 1)

]
(39)

and hence
k0D cos(k0a) = ik1A (r − 1) . (40)

We can use these two conditions to solve for r. Dividing the first equation by the second gives us
1
k0

tan(k0a) =
1 + r

ik1(r − 1)
(41)

and we can then solve for r

r =
ik1 tan(k0a) + k0

ik1 tan(k0a)− k0
=

ic0 tan(c1k1a/c0) + c1

ic0 tan(c1k1a/c0)− c1
(42)

where in the last step we used that fact that c0k0 = c1k1 = ω. Note that if c0 = c1, this expression reduces
to r = −e2ik0a, which is correct: with no discontinuity at x = a, we just have a factor of −1 for reflection
from the fixed end and a propagation (phase) factor of e2ik0a.
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4.2 Sums over Histories

a) The transmission and reflection coefficients for waves going from the light string to the heavy string are

R01 =
z0 − z1

z0 + z1
(43)

and
T01 =

2z0

z0 + z1
; (44)

similarly, the transmission and reflection coefficients for waves going from the heavy string to the light string
are

R10 =
z1 − z0

z1 + z0
(45)

and
T10 =

2z1

z1 + z0
(46)

where all we’ve done is switch the ones and zeroes.

b) A part of the incident wave is going to reflect back out when it hits the heavy-light boundary. The
complex amplitude of this, which we will call A0 is just the incident amplitude multiplied by the appropriate
reflection coefficient

A0 = R10A. (47)

Another part of the incident wave will be transmitted through the heavy-light boundary, reflect off of the
fixed boundary, and transmit back to the heavy string. The complex amplitude A1 of this part will be the
incident amplitude times the two appropriate transmission coefficients and multiplied by its phase shift from
traveling the extra distance 2a, with a minus sign for the reflection from the fixed end

A1 = −T10p
2T01A (48)

where we have defined the phase shift factor as in lecture: p ≡ eik0a.

c) If sum over all possible “histories” to get the total reflected amplitude Aref , we get the infinite series

Aref =
(
R10 − T10p

2T01 + T10R01p
4T01 − T10p

6R2
01T01 + ...

)
A (49)

and this equals

Aref =

[
R10 − T10T01p

2
∞∑

n=0

(
−R01p

2
)n

]
A (50)

which, using the geometric series formula, is also

Aref = A

[
R10 −

T10T01p
2

1 + R01p2

]
. (51)

So the reflection coefficient is

r =
Aref

A
= R10 −

T10T01p
2

1 + R01p2
. (52)

Now we can do some things to get back our answer from part (4.1):
1) plug in what we know for the reflection and transmission coefficients from part (a),
2) use Euler’s formula to expand p: p = eik0a = cos(k0a) + i sin(k0a)
3) and do a lot of algebra.
At the end of the day, we get back our answer from part (4.1)

r =
ic0 tan(c1k1a/c0) + c1

ic0 tan(c1k1a/c0)− c1
(53)
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5 Using Interference to Study Stars

a) Since we know that the star is is far away compared to the distance between the telescopes, we can assume
that the two light paths are essentially parallel (see Figure 2 on last page). From the diagram, we see that
the path difference is equal to D cos θ.

b) The signal coming to each telescope is coming from the same source, so the only reason why the measured
intensity differs is because of the phase difference due to the path length difference calculated in part (a).
Each signal by itself would have an amplitude

√
I0. If we say that the signal at B is <

[√
I0e

iωt
]
, then the

signal at A is <
[√

I0e
i(ωt+∆φ(θ))

]
, where it is just off by the phase difference caused by the path difference:

∆φ(θ) = 2π
D cos θ

λ
. (54)

The combined signal is simply the superposition, or sum, of the two signals and the intensity I(θ) is the
squared magnitude of this:

I(θ) = |
√

I0e
iωt

(
1 + ei∆φ(θ)

)
|2 = 2I0

(
1 + cos

(
2πD

λ
cos θ

))
. (55)

Using the half-angle trig identities, this becomes

I(θ) = 4I0 cos2
(

πD

λ
cos(θ)

)
. (56)

c) The intensity calculated above will be a minimum when cos(πD
λ cos(θ)) = 0. This happens when

cos(θ) =
(

n +
1
2

)
λ

D
(57)

where n is an integer, positive or negative. Likewise, the intensity becomes a maximum when cos(πD
λ cos(θ)) =

±1, and this happens when

cos(θ) =
nλ

D
(58)

where n is again any integer.

d) As we can see from part (c), in order to change the intensity from a maximum to a neighboring minimum,
we only have to change cos θ by λ/2D.

e) So if we say that
D ≈ 1 m (59)

and
λ ≈ 10−6 m (60)

then
λ

2D
≈ 5× 10−7 (61)

and thus it is very easy to measure a shift is cos θ of 5× 10−7. If cos θ ≈ 1, then this corresponds to a shift
of ∆θ ≈ 0.001 rad, which is too tiny to detect with the naked eye.
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