

Waves, Optics, and Particles, Fall 2004

Homework Assignment # 9

(Due Thursday, November 11 at 5:00pm *sharp.*)

Agenda and readings for the weeks of November 1 and November 8:

Skills to be mastered:

- Understand the pattern produced by N slit interference
- Understand the locations of the principal maxima, lesser maxima, and minima in an N slit pattern
- Understand the concept of *width* of a maximum in an interference pattern
- Understand the properties of the interference pattern produced by diffraction on a finite slit.

Lectures and Readings:

- Lec 19, 11/2 (Tue): Finite-slit interference
Readings: LN “Wave Phenomena II: Interference,” Sec. 4; VW pp. 288-294.
- Lec 20, 11/4 (Thu): N finite slits: combining diffraction and interference
Readings: LN “Wave Phenomena II: Interference,” Sec. 5; VW pp. 284-298; AG section 25.8. Note: for more detail about interference and diffraction, see Chapters 35 and 36 in Young and Freedman (11th edition), or the corresponding chapters in any other introductory physics text.
- Lec 21, 11/9 (Tue): Differential equation form for conservation laws; conservation of momentum.
Readings: LN “Wave Phenomena III: Transport of momentum and energy,” Secs. 1, 2, 3; VW pp. 237-244.
- Lec 22, 11/11 (Thu): Conservation of energy, power, special cases for traveling waves.
Readings: LN “Wave Phenomena III: Transport of momentum and energy,” Sec. 4.

1 N -slit interference and diffraction

A system of several identical parallel narrow slits is illuminated with red light of wavelength $\lambda = 720$ nm. The interference pattern shown in Fig. 1 is observed on a screen 4.0 m from the slits. The graph shows the intensity in mW/m^2 as a function of x , the distance on the screen from the center of the pattern.

- How many slits are there? Explain.
- What is the separation d between the slits? Compare your answer to the typical thickness of a human hair, about 0.01 cm.
- What is the width a of each slit?
- What would be the intensity at $x = 0$ if all but one of the slits were closed? Explain.
- What would the intensity graph as a function of x look like if the slits were very narrow ($a \ll \lambda$)? Assume the same number of slits and the same slit spacing d . Don’t worry about the scale of the intensity axis on the graph; we just want a sketch that’s qualitatively correct.

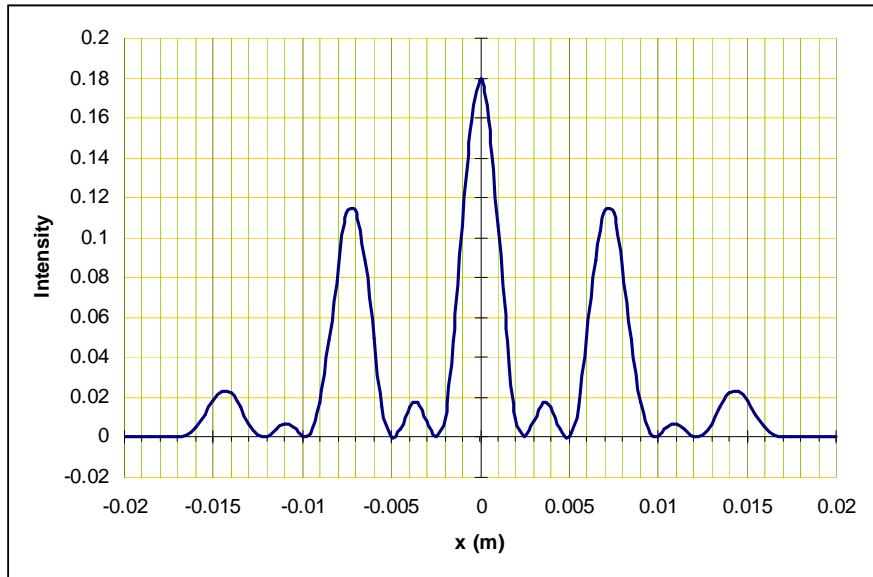


Figure 1: Interference pattern observed on a distant screen.

2 Measuring wavelengths with a grating

A grating is used to analyze a light source. The screen-to-grating distance is 50.0 cm and the grating has 5000.0 slits/cm. Spectral lines are observed at the following angles: 12.98° , 19.0° , 26.7° , 40.6° , 42.4° , 63.9° , and 77.6° .

- (a) How many different wavelengths are present in the spectrum of this light source? Find each of the wavelengths.
- (b) If a different grating with 2000.0 slits/cm were used, how many spectral lines would be seen on the screen on *each side* of the central maximum? Explain.

3 Resolving Power of a Grating

A grating with N slits is illuminated with a mixture of light with two wavelengths, λ and λ' . The wavelengths are very nearly equal: $\lambda' - \lambda = \Delta\lambda \ll \lambda$.

- (a) The m^{th} -order maxima for wavelengths λ and λ' occur at angles θ_m and θ'_m , respectively. What is the angular separation $\delta_m = \theta'_m - \theta_m$ of the m^{th} -order maxima for the two wavelengths? Simplify your answer based on the assumption that δ_m is a small angle. You may find it helpful to use a trig identity for $\sin(\alpha + \beta)$. Express your answer in terms of m , λ , $\Delta\lambda$, and d *only*.
- (b) The *angular half-width* of a principal maximum is the angular separation between the principal maximum and the closest minimum. Find the angular half-width ϵ_m of the m^{th} order principal maximum for wavelength λ . Express your answer in terms of m , λ , N , and d *only*. [Hint: sum the finite geometric series $1 + e^{2\pi i/N} + e^{4\pi i/N} + \dots + e^{2(N-1)\pi i/N}$ and then figure out that helps you find the first minimum past a principal maximum.]
- (c) The grating can only resolve (separate) two nearly equal wavelengths in m^{th} order if the angular separation δ_m is sufficiently large. Explain why.

(d) A common but somewhat arbitrary criterion is that the wavelengths can be resolved if $\delta_m \geq \epsilon_m$. Using that criterion, what is the minimal value of $\Delta\lambda$ for which the waves can be resolved in m^{th} order? Express your answer in terms of m , λ , N , and d (as needed).

4 Reflection Grating

A *reflection grating* consists of an array of N equally spaced, identical narrow reflecting grooves or ridges on a non-reflecting surface. Light (wavelength = λ) from a distant source falls *normally* (that is, perpendicularly to the surface) on the grating. A distant observer observes light reflected at angle θ , see Fig. 2.

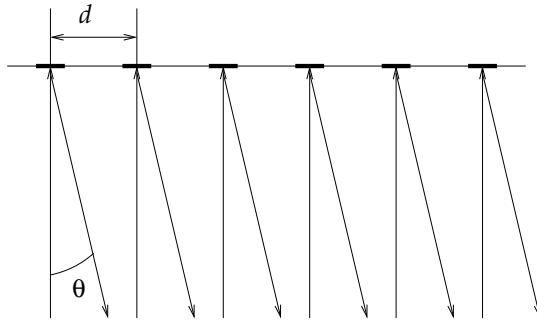


Figure 2: Reflection grating.

- (a) What values of the angle θ_m correspond to principal maxima?
- (b) Does the answer to (a) depend on N ? Explain. If not, then what is the reason we generally use gratings (whether transmission gratings or reflection gratings) with very large N ?
- (c) Based on how the angles for principal maxima depend on λ , explain why the surface of a compact disc looks “rainbow-colored” when seen from an angle. [Hint: Natural light is a mixture of waves with wavelength spanning the whole spectrum from violet to red.]
- (d) Suppose that the reflection grating is now illuminated with light from a distant source that is *off-axis*. That is, the incident light makes an angle $\phi \neq 0$ with the normal to the grating. At what angles θ_m do the principal maxima occur now?
- (e) In the case of grazing incidence, as in Lab Experiment 3, ϕ is close to $\pi/2$. It is then more convenient to work with angles with respect to the grating *surface* rather than angles with respect to the normal. Let $\phi = \frac{\pi}{2} - \alpha$ and $\theta = \frac{\pi}{2} - \beta$. Find the angles β_m at which the principal maxima are found for a given value of α . Simplify your answer using small-angle approximations for α and β .
- (f) Suppose that $d \gg \lambda$, as in Experiment 3. Use your answer to (e) to explain why we did the lab experiment using grazing incidence. [Hint: look at how the angular separation between principal maxima, $\beta_{m+1} - \beta_m$, depends on α .]

5 Checking some interesting limiting cases

- (a) Let $I_a(\theta)$ be the expression for the intensity on the screen for a single slit of width a . Take the limit of $I_a(\theta)$ as $a \rightarrow 0$. Explain and interpret your result.
- (b) Let $I_{N \times a}(\theta)$ be the expression for the intensity on the screen for N slits of width a and separation d . Simplify the form of $I_{N \times a}(\theta)$ in the special case $d = a$. Explain and interpret your result.