Physics 214 - Problem Set 9 - Solutions
N-narrow slit interference:

sin?(Nkdsin(6)/2)

I(@) =1y Sin2<kdsin(9)/2)

N-finite slit interference:
sin?(ka sin(0)/2) sin®(Nkdsin(6)/2)
(kasin(6)/2)?  sin®(kdsin(6)/2)

If a screen is a distance L from the source, and measurements are made at position z (relative to the
maximum intensity on the screen), the relation between the angle and z is:

1(0) = I,

(2)

0 =tan~' T
an”! 7 (3)

1 N-slit interference and diffraction

Figure 1 in the problem set plots the intensity of an N-finite slit interference pattern (see (2)). Since the
screen is 4.0 m from the slits, x € (—0.02 m,0.02 m), and .02 m/4.0 m < 1 the small angle approximation
says

sinf(z) = sintan™" él()im ~ 4.(?:111'

(4)
Substituting (4) into (2) gives

sin®(kag&—) sin®(Nkdg&-)
(kagi=)?  sin?(kd

1

[(.1?) = I()

8.0 m

The wavelength, (A = 720 nm), determines the wave vector k.

kE=2r/XA=2873x10°m™! (6)

a) Since there is one lesser maximum between each pair of maxima, N = 3.

one slit two slits three slits

four slits five slits six slits
b) The second primary maximum occurs when sin(kdgim) = 0. Reading off the graph: o = Zopg maz =
0.0072 m. This occurs when kdg% = 7, or:



d_8m><7r 8 m x 3.14

zok  0.0072 m x (8.73 x 106 m~1)
Notice how this is the same magnitude as the width of a human hair (0.0001 m).
¢) Recall that for b =0 and b = x5
in*(Nkdg
1m781r.1£ 8m):]\fz:9
z—b sin®(kdgy-)

and
2
ka =

tim S F05) _

z—0 (ka%)
Therefore

Ji sin (k:agfb) 9 .9
I(z2) 0X “hazz)2 X sin (kaé%)

1(0) Iox1x9 (ka2 )2

8m
The ratio comes from the graph
I(xy) 0.115

=2 =064
100) ~ 0.18

The slit width a is found by solving

sin? (ka - )
(kag)?

8 m

0.64 =

The easiest way to solve this problem numerically is to plot y;(a) and ya(a) defined by

y1(a) = 0.64
(@) sin?(ka%)  sin®(8.73 x 100 m~! x 20072 m)
a) = =

v (kag2)? (8.73 x 106 m~1 x 2%0072m)2

The intersection point' is approximately a = 0.000145 m = 1.45 x 10~% m.

1

[ 3

Y1,Y2 vs. a [m]

10n the TI-83 the command is ‘2nd’ ‘Trace’ ‘5-Intersect’

= =0.00040 m = 4.0 x 10™* m

(10)

(11)

(12)



d) The intensity for one slit at 2 = 0 is (setting N =1 and § = 0)

sin?(ka sin(0)/2) sin?(1 x kdsin(6)/2)

I= 1 15
sn(@)—0  (kasin(0)/2)2  sin?(kdsin(6)/2) (15)
sin?(kasin(0)/2)
= 1 1
sin(6) 0 ° (kasin(0)/2)2 (16)
) (kasin(6)/2)?
= 1 Io—F-7+F"5% 1
sin(ler)ILo % (kasin(0)/2)? (17)
= Iy (18)
The intensity for three slits at = 0 is (setting N = 3 and 6 = 0)
.. 9 . . 92 .
I— lim Osm (ka sin(0)/2) sm' (i;) X kc'ism(ﬁ)/Q) (19)
sin(0)—0  (kasin(#)/2)?  sin*(kdsin(9)/2)
sin?(ka sin(6)/2)
= i 2
a0 O " rasm@) 22 < ° (20)
, (kasin(0)/2)?
= 1 lo—F—FF——+ 21
ant0=0 " (kasin(g)/2)2 < ° 1)
=9I, (22)

From the graph, it is apparent that 9Ip = 0.18 mW?/m? which implies that Iy = 0.02 mW?2/m? is the
intensity of one slit at z = 0.
e) Assume a < . Since k = 27/, ak = 27¢ < 1 and

)= 1o ?k(km;“) R 29
_, (kaggs)? sin®(Nkdggr)
_10( : ) Sm( e (24)
B sm( )
=t sm2(kd8,gm) (25)

The slits become narrow.

the interference pattern when slits are narrow

2 Measuring wavelengths with a grating

a) A grating gives rise to an N-narrow slit interference pattern where N > 1. Since N is large, the non-
primary maxima are negligible. The primary (and only) maxima occur when



dsin(f) =nA n=0,1,2,3,... (26)

The table below shows that there are only two wavelengths (approximately 449.3 nm and 651.1 nm). The
first column is data that is given. The second column is just dsin(d). The third and fourth columns are
found by inspection.

1 cm
= 5000 — 0.000002 m (27)
6[° dsin()nm] = n x X[nm]
12.98 4492 = 1 x 449.2
19.0 651 = 1 x 651.1
26.7 899 = 2 x 449.3
40.6 1301 = 2 x 650.8
42.4 1349 = 3 x 449.5
63.9 1796 = 4 x 449.0
77.6 1953 = 3 x 651.1

b) Now suppose d = 1 ¢cm/2000 = 5000 nm. Given n and A, the angle 6 is

0, =sin"" — (28)

The table below shows the computations. When n is “large”, the inverse sin breaks down and there are
no more visible light rays. The total number of unique angles (# 0) is 18 = 11 + 7.

no () ()
2 10.4 15.1
3 15.6 23.0
4 21.1 314
5 26.7 40.6
6 32.6 51.4
7 39.0 65.7
8 46.0 X
9 54.0 X
10 64.0 X
11 81.3 X
12 X X
3 Resolving Power of a Grating
A grating with N slits gives rise to the following interference pattern.
.2 .
sin“(Nkdsin(0)/2
1(0) = 1, N0 2) (29)
sin”(kd sin(6)/2)
a) The primary maxima occur at angles 6,, given by
kdsin(0,,)/2=mr m=0,1,2,3,... (30)
or
2 A
0,, = sin~* (Z(Liﬂ> =sin"! <n2l> (31)



If there are two wavelengths A and \' = A\ + A\ then

If AX is small, a first order taylor expansion is sufficient.

sinH(z 4 ¢€) ~sin~ a4

N
mAN
O = |sin™! (?) + d =| — sin~! (n;)\
1- (%)
mAX
d
o 2
(%)
B mA
VA2 —m2)2

b) The m’th principla maxima occurs when

kdsin(0)/2 = mm.

Multiplying by N gives the parameter to sin? in the numerator

Nkdsin(0,,)/2 = Nmm.

The next minimum will occur after one more 7 is added to the right hand side.

Nkdsin(0,, + €,)/2 = (Nm + 1)«

Solving for €, gives

Assuming N > 1 and invoking (36) gives

A

Nd

o 2
1= (")
B A

 NVAZ —m2\2

€Em —

(46)

(47)



c+d) The grating can distinguish two wavelengths if the separation is greater than the width (otherwise the
two signals will overlap)

Om > €m (48)
mA A
d? — m?2)\2 ” NVd?2 —m2\2 (49)
A
A AN
A > Nom (50)

4 Reflection Grating

a) The principle maxima occur at angles 6,, where
A
dsin(f,) =m\ = 6, =sin"! (nZl) (51)

b) The answer does not depend on N. When N — oo the non-primary maxima are negligible and the
primary maxima are very narrow. This is why gratings are useful; gratings can restrict light to specific
angles. (see figures in question one)

¢) One way to rewrite (51) with m =1 is

/\(91) = dSiH(Gl). (52)

In other words, every angle is the first maximum for some wavelength, changing the angle changes the
wavelength. A light source whose wavelength is a continuous function of angle is usually called a rainbow!

d)
Loty \ / dsin(¢)

Constructive interference occurs when the relative phase differences add to a multiple of the wavelength.

dsin(¢) — dsin(,,) = mA m =0,+1,+£2,+3, ... (53)

Notice how m can be negative. The solution for 6,, is



0, = sin™* (W;)\ + sin(gf)))

e) Let ¢ =3 —a, 0 = 5 — 3, and assume 6,,, > ¢.

sin 0,, = 7%)‘ + sin(¢)

sin (g fﬂm) = 7%)‘ + sin (g fa)

To second order:

T 1
. Z_3, %1_72
sin (5 = Bn) =1 300

and

Substituting (57) and (58) into (56) gives

1.,  mA 1 5

L=gfn=—"g +1-350
2mA
572n:0£2+7

(54)

(59)

(60)

Taking the square root and using the approximation va? + € = a + ¢/(2a) (assuming the second term is

small) gives

5m:a+a

f) Suppose d > A, then the above approximation is valid and

Bm+1 = P = <oz+(md+al))\> — <a+(7;o)é>‘>
A

= 2o

This set up is useful because small a gives a large separation.

5 Checking some interesting limiting cases

a)

sin? (kasin(6)/2)
(kasin(9)/2)*

Ia(g) = IO

When a — 0, sin?(¢) =~ ¢ and

sin? (kasin(0)/2) . (kasin(9)/2)*
A Jo (kasin(8)/2)* fo (kasin(6)/2)> fo

(61)

(64)



The intensity is independent of angle (Huygens’ Principle)
b)

sin?(ka sin(0)/2) sin*( Nkdsin(6)/2)

L= sm(®)/2)7 s (hdsin(0) /2)

Suppose a = d in the expression:

sin?(kdsin(f)/2) sin®(Nkdsin(6) /2)
(kdsin(0)/2)?  sin®(kdsin(6)/2)

sin?( Nkdsin(8)/2)

(kdsin(6)/2)?

B ,sin?(k(Nd)sin(0)/2)

=Ly (k(Nd) sin(6)/2)?

The result is a single slit with width Nd (When a = d the spaces between the slits disappear).



