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spend too much time on challenge problems until you have completed the rest of
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1 Damped, driven oscillator, limiting cases [25 points]
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Figure 1: Damped, driven oscillator from lecture

Figure 1 shows the damped, driven oscillator studied in lecture. The system consists of a
mass m which moves along frictionless rod along the x-axis under the influence of (1) a drag force
Fd = −bmv, where v is the velocity of the mass; (2) a spring of spring constant k and equilibrium
position xeq; and (3) an external periodic drive force of amplitude F0 with frequency ω and phase
φ0 = 0, Fext(t) = F0 cos(ωt).

In lecture, we showed that
x(t) = xeq + Re

(

Aeiωt
)

(1.1)

provided

A =
F0/m

ω2
0
− ω2 + ibω

.

where ω0 ≡
√

k/m.
The problems starting on the following pages consider various simplifications of this system.
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(a) Spring and external force only (12 points)

Consider the case where m = 0 and there is no drag (b = 0) so that the system consists basically
of only a spring tied to the external force. Physics still determines the position of the endpoint of
the spring. Note that, because there is so little left in this problem, some of the answers below are
very simple; i.e., there is only one degree of freedom.

What is the degree of freedom (D of F) for this system?

What is the equation of motion (E of M)?

Using the complex representation, find the value of A so that Eq. (1.1) solves the equation of motion.

Is your solution above a general solution? Why or why not?

PLEASE TURN PAGE
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(b) Mass and external force only (9 points)

Consider the case where there is no drag (b = 0) and no spring (k = 0), so that there is only a mass
m and the external force.

Using the complex representation, find the value of A so that Eq. (1.1) solves the equation of motion.

PLEASE TURN PAGE
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(c) Challenge: Limiting cases (4 points)

Each of the simplified problems

(a) External force and spring only (m = 0, b = 0)

(b) External force and mass only (k = 0, b = 0)

corresponds to one of the scenarios below for the complete problem (mass m > 0, spring constant
k > 0, drag constant b > 0 and external force F0 > 0).

Apply force very gradually (low frequency): ω << ω0 and ω << b

Apply force back and forth very rapidly (high frequency): ω >> ω0 and ω >> b

Put the letter of the appropriate simplified problem in the box next to the corresponding limit.
Hint: You also can do this by physical reasoning rather than trying to solve the problem mathe-
matically.

PLEASE TURN PAGE
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2 Lab Experiment I [25 points]

This problem considers a modification of the sound tube experiment from Lab I. The new experiment
uses a tube of a different length, with two closed ends and filled with an unknown gas and with
a modified speaker placed in the center of the tube. (See Figure 2.) This speaker consists of a

sliding rod

x

stoppers

speaker

microphones
sliding rod

Figure 2: Modification of sound tube experiment from Lab I.

very thin solid membrane that moves back and forth, carrying the air on either side along with it.
Finally, to measure the waves in the tube, two microphones sit upon a rods which slide through the
stoppers at both ends to allow measurements at various positions.

At a frequency of f0 = 2000 Hz, you find a clear resonance in the tube. For this frequency,
you record the amplitude of the oscillations seen on the oscilloscope screen at a series of different
positions in the tube. Figure 3 shows this amplitude, converted to pressure measured in newtons per
square meter, plotted as a function of microphone position. Note that the graph shows no measured
values at positions near the edges and near the speaker, locations which you cannot access due to
the size of the microphone. Although some of the data are missing, you can assume that there is
no space for any extra oscillations in the missing data.
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Figure 3: Data from modified sound tube experiment
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(a) Speed of sound (10 points)

From the information given, determine an approximate value for the speed of sound of the unknown

gas in the tube in units of m/s.

PLEASE TURN PAGE
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(b) Displacement (10 points)

From the data in Fig. 3, make a sketch on the axes below of the shape of the corresponding gas
displacement function s(x, t) as a function of position x in the tube at a time t = t0 for which
s(x, t) 6= 0. Indicate on your sketch the locations of the ends of the tube and the location of the
speaker. Be sure to align your sketch with the pressure pattern shown below.
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(c) Length of the space in the tube (5 points)

Give, in units of m, an approximate numerical value of the length L of the space in the tube which
is filled with the gas.

PLEASE TURN PAGE
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3 Strings and springs [30 points]

Figure 4 shows a standard string system from lecture of length L, mass per unit length µ, and
applied tension τ . But, now each end (rather than being fixed) is attached to a massless ring which
slides along a frictionless rod and is attached to a spring with spring constant S and equilibrium
position y = 0. Note that we use S for the spring constant to avoid possible confusion with the
wave-vector k of waves in this system. Finally, the y-axis is horizontal and the tension τ far exceeds
the weight of the string so that you may completely ignore the effects of gravity in this problem.

Ly

x=0 x=L

frictionless rods
x

m=0 m=0

S SPSfrag replacements

ττ

µ

ym

Figure 4: Standard string system but with modified free boundary conditions with springs

(a) Boundary conditions (10 points)

Derive the boundary conditions that apply to the ends of the string at x = 0 and x = L when the
string is not necessarily straight.

Boundary condition at x = 0:

Boundary condition at x = L:

PLEASE TURN PAGE
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Important note: If you were unable to do part (a), assume for the rest of the problem that the

boundary conditions are ∂y

∂t
|x=0 = τ

S

∂2y

∂t∂x
|x=0 and ∂y

∂t
|x=L = − τ

S

∂2y

∂t∂x
|x=L. These are not the correct

boundary conditions!

(b) Natural modes (10 points)

Derive two mathematical equations (one for x = 0 and one for x = L) in terms of no quanti-
ties other than ω, k, S, τ , µ and L which must hold in order that the natural mode solution
y(x, t) = A cos(kx + φ0) cos(ωt) satisfy the boundary condition from (a). (Do not attempt to solve
them!)

Hints: You should be able to find simple expressions for the values of tan(φ0) and tan(kL + φ0).
Remember that tan θ = sin θ/ cos θ.

PLEASE TURN PAGE
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(c) Effective simple harmonic oscillator (5 points)

If the springs are relatively weak (S << τ/L), in its lowest frequency natural mode, the string
remains almost straight and oscillates up and down as a unit. Treating the system as a simple
harmonic oscillator, estimate the angular frequency ω of this natural mode in terms of no quantities
other than µ, τ , S, and L.

PLEASE TURN PAGE
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(d) Challenge: Lowest mode (5 points)

When the spring is weak (S << τ/L), the string in the lowest most is almost perfectly straight
so that kL << 1. Under these conditions, you can use the small angle approximation tan θ ≈ θ
in both of your equations in (b). After approximating both equations in this way, solve them and
show that the angular frequency ω of the mode agrees exactly with your guess from (c)!!!

PLEASE TURN PAGE
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4 Waves on a rotating rope [20 points]

Figure 4 shows a perspective and side view of a rope of mass density µ and length L rotating in
the plane perpendicular to the y-axis at angular velocity Ω and undergoing vertical wave motion.
Note that we use capital Ω for the angular velocity of the rotation to distinguish it from the angular
frequency ω of waves in the system. You may take the rope as rotating fast enough that you may
ignore gravity.

L

perspective view side view

y

r

y

r=0 r=LPSfrag replacements

µΩ

Figure 5: Analysis of vertical oscillations of a rotating rope.

Analogous to waves on a normal string, the function y(r, t) giving the vertical displacement along
y of the chunk which originated at distance r from the center of rotation makes up the appropriate
degrees of freedom.

(a) Equation of motion (15 points)

In terms of τ(r) (defined as the radial component of the tension in the rope at distance r from the
center), y(r, t), and appropriate derivatives, what is µ∂2y(r, t)/∂t2?
Hint: To save time, you can start with the differential form of Newton’s law for strings
from the formula sheet and not bother with a free-body diagram.

PLEASE TURN PAGE
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(b) Challenge: Standing wave (5 points)

For the lowest natural mode of this unusual system, the rope stays perfectly straight with its slope
oscillating up and down, y(r, t) = A cos(ωt) · r. In terms of no quantities other than µ, L and Ω,
what is the angular frequency ω of these oscillations?

Hints:

• Use the result of applying Newton’s law in the radial direction that τ(r) = µΩ2 (L2 − r2) /2.

• The correct answer has a very simple form.

PLEASE TURN PAGE
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END OF EXAM


