P214 Formula Sheets: Prelim II

Complex numbers

$e^{ix} = \cos(x) + i\sin(x)$
$\underline{A} ^2 = A_r^2 + A_i^2 = \underline{A}^* \underline{A}$
$ \underline{A} \cdot \underline{B} = \underline{A} \cdot \underline{B} $
$ \underline{A}/\underline{B} = \underline{A} / \underline{B} $

Basic wave relationships

 $\begin{array}{ll} f=1/T & \kappa=1/\lambda \\ \omega=2\pi f & k=2\pi\kappa \\ \omega=2\pi/T & k=2\pi/\lambda \\ c=\lambda f & c=\omega/k \end{array}$

Wave physics

Quantity	String	Sound	E&M	
Dynamical law(s)	$F_y = \pm \tau \frac{\partial y}{\partial x}$	$P = P_o - B \frac{\partial s}{\partial x}$	$\begin{cases} \frac{\partial E_y}{\partial x} = -\frac{\partial B_z}{\partial t}\\ \frac{\partial B_z}{\partial x} = -\mu_0 \epsilon_0 \frac{\partial E_y}{\partial t} \end{cases}$	
Wave equation	$\tau \frac{\partial^2 y}{\partial x^2} = \mu \frac{\partial^2 y}{\partial t^2}$	$B\frac{\partial^2 s}{\partial x^2} = \rho \frac{\partial^2 s}{\partial t^2}$	$\frac{1}{\mu_0} \frac{\partial^2 E_y}{\partial x^2} = \epsilon_0 \frac{\partial^2 E_y}{\partial t^2}$	
Impedance	$Z = \frac{\tau}{c} = \sqrt{\tau\mu}$	$Z = \frac{B}{c} = \sqrt{B\rho}$	$Z = \frac{\frac{1}{\mu_0}}{c} = \sqrt{\epsilon_0/\mu_0}$	

Electromagnetic Waves in Vacuum

 $\begin{array}{ll} \mbox{Relative Field strengths:} & |\vec{E}| = c |\vec{B}| & (\mbox{for a plane wave}) \\ \mbox{Direction of propagation:} & \vec{E} \times \vec{B} \\ \end{array}$

Wave equation and solutions

$$\begin{split} c^2 \frac{\partial^2 y}{\partial x^2} &= \frac{\partial^2 y}{\partial t^2} \\ \mp c \frac{\partial y}{\partial x} &= \frac{\partial y}{\partial t} \quad \text{(pulse Eq.)} \\ y(x,t) &= f(x-ct) + g(x+ct) \\ y(x,t) &= h(x+ct) - h(-(x-ct)) \quad \text{reflection from fixed BC} \\ y(x,t) &= h(x+ct) + h(-(x-ct)) \quad \text{reflection from free BC} \end{split}$$

Reflection and transmission at boundary

$$\underline{R}_{0\to 1} = \frac{Z_0 - Z_1}{Z_0 + Z_1}$$
$$\underline{T}_{0\to 1} = \frac{2Z_0}{Z_0 + Z_1}$$

Interference

 $\begin{array}{ll} \text{Constructive:} & \Delta \phi = k \Delta R = 2 \pi n \\ \text{Destructive:} & \Delta \phi = k \Delta r = (2n+1) \pi, \end{array}$

where $\Delta \phi$ is the phase difference between paths, and n is an integer.

Double Slit Interference

Intensity:	$I(\theta) = 4I_0 \cos^2(k\Delta R/2)$ where $\Delta R = d\sin\theta$
Minima:	$\phi/(2\pi) = \frac{d}{\lambda}\sin\theta = (n+1/2)$
Maxima:	$\phi/(2\pi) = \frac{d}{\lambda}\sin\theta = n$

Physical Constants

Quantity	Symbol	Value
Atomic mass unit	amu	$1.66 imes 10^{-27} \mathrm{kg}$
Electronic Mass	m_e	$1 \times 10^{-30} \mathrm{kg}$
Electronic Charge	e	$1.6 imes 10^{-19} \mathbf{C}$
Permitivity of Free Space	ϵ_0	$8.9 \times 10^{-12} \mathrm{C}^2 / (\mathrm{N} \cdot \mathrm{m}^2)$
Permeability of Free Space	μ_0	$4\pi \times 10^{-7} \mathrm{Ns^2/C^2}$
Speed of Light	С	$3 \times 10^8 \mathrm{m/s}$