Cornell University

Department of Physics

Phys 214 August 23, 2006

Waves, Optics, and Particles, Fall 2006

Homework Assignment # 1

(Due Thursday, August 31 at 5:00pm sharp.)

Agenda and readings for the weeks of August 21, 28:

Skills to be mastered:

- Review arithmetic of complex numbers
- Be able to go back and forth between a graph of simple harmonic motion and the values of $x_{\rm eq}$, A, ω_o , f, T, ϕ_o .

Lectures and Readings:

Readings marked LN are from the course lecture notes to be found at http://people.ccmr.cornell.edu/~muchomas/P214; optional readings marked VW are from the *optional* class text *Vibrations and Waves*; and optional readings marked YF are from the optional class text Young and Freedman, *University Physics*, 11th edition.

- Lec 1, 08/26 (Thu): General class introduction; Introduction to simple harmonic motion (SHM). Readings: LN "Simple Harmonic Motion," Secs. 1–3; YF 13.1–13.3
- Lec 2, 08/31 (Tue): General and particular solutions for SHM.

 Readings: LN "Simple Harmonic Motion," Sec. 4; VW, pp. 6-7; Sections 2-4 from Alan Giambattista's Oscillations chapter (link on course home page).
- Lec 3, 09/02 (Thu): Complex representation for SHM.

 Readings: LN "Simple Harmonic Motion," Sec. 5; VW, pp. 7-16

Contents

L	Review of complex numbers	2
2	Basic characterization of harmonic motion	2
	2.1	2
	2.2	2

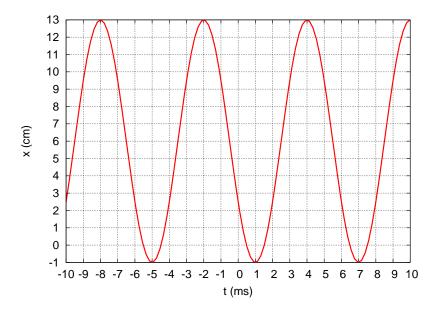


Figure 1: Position of a mass in simple harmonic motion as a function of time.

1 Review of complex numbers

For x = -7 - 24i and y = -8 + 15i, express the following both in Cartesian form (a + bi) and polar form $(Ae^{i\phi})$:

(a) x and y; (b) x - y; (c) xy; (d) $\frac{y}{x}$; (e) e^y ; (f) |x|; (g) |y|.

Hint: Note that once you've converted x and y to polar form, some of these operations are easier to do in polar form.

Compute the following by *direct evaluation* (again, some are easier in polar and some easier in Cartesian):

- (h) xx^* , where x^* is the complex conjugate of x. (Compare to $|x|^2$!)
- (i) x^*y^* (Compare to $(xy)^*!$)
- (j) e^{y^*} (Compare to $(e^y)^*!$)
- (k) |xy| (Compare to $|x| \cdot |y|$!)
- (1) $\left|\frac{y}{x}\right|$ (Compare to |y|/|x|!)

2 Basic characterization of harmonic motion

2.1

Sketch a graph of $x(t) = -10.0 \text{ cm} - (10.0 \text{ cm}) \cos \left((125.7 \frac{\text{rad}}{\text{sec}})t + (\frac{2\pi}{3} \text{ rad}) \right)$. Label axes and show at least 2 complete cycles. What are the amplitude A, period T and frequency f (in Hz) of this motion?

2.2

(b) <u>Determine</u> values of x_{eq} , A, ω_o , f, T, ϕ_o from the graph of $x(t) = x_{eq} + A\cos(\omega_o t + \phi_o)$ in Figure 1. Approximate answers to one or two significant figures are fine. Be sure to provide units for your answers!!! (Note that, in this class, we always **require** units but normally won't remind you.)