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1 Motivation

The previous set of notes discussed wave reflections generated from boundaries. The phenomenon of reflection
is far more general and occurs (except under very special circumstances) whenever there is a change in the
medium of propagation. Practical applications of this include RADAR, where microwaves propagating
through the atmosphere encounter another material, such as the metallic body of an aircraft or even the
flesh and bone of a flock of birds, whose propagation properties are different. The resulting reflection then
returns to the RADAR source, where the presence of the reflection and thus the presence of something in
the air is detected. Another application is in medical ultrasound applications. Here, high frequency sound
waves traveling through one material, such as amniotic fluid, encounters another material which different
propagation properties, such as a baby. Again, the change in propagation generates a reflection, which can
be measured to study how the baby is developing.
At a general change in medium, not all of the wave is reflected. Some of it is transmitted into the new

medium, where it continues to propagation. The purpose of these notes is to understand both processes,
transmission and reflection.
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Figure 1: Physical realization for wave behavior at a change in medium: a massless membrane of cross-
sectional area A separates regions filled with two different media.

2 Physical realization

As described above, transmission and reflection from a change in medium is quite general and applies to all
types of waves. For concreteness, we focus on the propagation of sound as an example. As we move along in
the analysis we will also describe briefly the analogous results for other types of waves in a series of footnotes.
Figure 1 illustrates our realization. The system consists of two regions, Region 0 (all points x < 0) and

Region 1 (all points x > 0). The material in Region 0 may be a gas, fluid, or solid, and is characterized by
an equilibrium mass density, bulk modulus and pressure of ρ0, B0, and P0, respectively. Region 1 consists
of some other medium with corresponding quantities ρ1, B1 and P1. Finally, if necessary to keep the media
from mixing (if they are gas or fluid), we may include a thin, massless membrane at x = 0. We let this
membrane be completely free to move without friction.
Before any waves are introduced into this combined system, we allow the two media to reach equilibrium

with each other. In equilibrium, the membrane will not move, and so the net force on it in the x-direction,
F = A · (P0 − P1), where A is the total area of the membrane, must be zero. Hence, P0 = P1, and the
pressures on either side are in balance. Because these two quantities are equal, we shall henceforth refer to
them both as P ≡ P0 = P1

1.

3 General Analysis

3.1 Degrees of Freedom

The degrees of freedom for this system are the sound displacement for each point in either region and the
displacement of the membrane. We denote the displacements in Region 0 as s0(x < 0, t) and in Region 1
as s1(x > 0, t). The membrane follows the motion of the material of the neighboring points on either side
of it. Its position, xmem(t) thus can be determined equally well in two different ways, either by considering
Region 0 or Region 1, xmem(t) = s0(x = 0, t) = s1(x = 0, t).
Thus, the degrees of freedom (minimal set of variables needed to describe the state of the system at

any time t) for the combined system are the values s0(x ≤ 0, t) and s1(x ≥ 0, t), with the extra constraint

1The analogous result for waves on strings would be that the two applied tensions are in balance, τ0 = τ1. For electromagnetic
waves, there is no analogous balance: ε and µ may take any value on either side of the boundary.
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(because this description is slightly redundant) of consistency,

s0(x = 0, t) = s1(x = 0, t), (1)

which, mathematically, is considered our first boundary condition at x = 0.2

3.2 Equations of Motion

As there are no long range forces in this problem, all points interior to each boundary feel forces only from
their neighboring points, and so all interior points obey the same equation of motion we have already found
for such media, namely the wave equation. Thus, we have

∂2s0(x, t)

∂t2
= c20

∂2s0(x, t)

∂x2
(2)

∂2s1(x, t)

∂t2
= c21

∂2s0(x, t)

∂x2
,

where c0 =
√

B0/ρ0, c1 =
√

B1/ρ1.
3

The only remaining equation of motion is that for the membrane xmem(t) = s0(x = 0, t) = s1(x = 0, t).
Considering motion only in the x-direction and using the facts that the membrane is massless and that the
equilibrium pressures are equal on either side, we find the second boundary condition at x = 0,

mac of m
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= B1
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∂x

∣

∣

∣

∣

x=0

. (3)

We shall refer to this second boundary condition as force balance.4

3.3 General Solution

3.3.1 Solution within each region

We already have the general solutions to (2),

s0(x < 0, t) = t0(x− c0t) + a0(x+ c0t) (4)

s1(x > 0, t) = t1(x+ c1t) + a1(x− c1t).

Here, to properly solve the respective wave equation, we use the wave speed appropriate to each region,
c0 and c1, respectively. As a matter of notation, rather than labeling the forward and backward traveling
pulse shape functions in each region as f(x − ct) and g(x + ct), respectively, we now name them so that
t0(x − c0t) describes a pulse in Region 0 traveling toward the interface at speed c0, a0(x + c0t) describes a
pulse in Region 0 traveling away from the interface, and t1(x+ c1t) and a1(x− c1t) describe pulses moving
in Region 1 either toward or away from the interface, respectively. We introduce this labeling here because,

2Analogously, for strings we would have as the degrees of freedom y0(x ≤ 0, t), y1(x ≥ 0, t) with the boundary condition

y0(x = 0, t) = y1(x = 0, t). For electromagnetic waves traveling along x, one finds as the degrees of freedom ~E0(x ≤ 0, t),
~E1(x ≥ 0, t); ~B0(x ≤ 0, t), ~B1(x ≥ 0, t), with constraint ~E0(x = 0, t) = ~E1(x = 0, t).

3Analogously, for strings and electromagnetic waves, we find also our standard wave equations for all points x 6= 0.
4For strings, the analogous quantity to pressure is the y-component of the tension Ty , and we find τ∂y0/∂x = τ∂y1/∂x at

x = 0. In electromagnetic theory, we find that (1/µ0) ~B0 = (1/µ1) ~B1.

3



ultimately, we are interested in knowing what reflections and transmissions comes out from the interface,
given what we send into it.
There are two reasons why (2) is not a general solution to the overall set of equations of motion. First, it

has too many arbitrary parameters. Each point on either side of the interface (or molecule, if you prefer to
count discrete objects) obeys a second order (in time) equation of motion. The general solution thus must
have two arbitrary parameters for each point in space. However, there are four arbitrary functions in (4),
each of which can take any value for each value of its argument. Thus, there are four adjustable parameters
per point in space, rather than just two. We must therefore be able to eliminate two of the four functions in
(4) using some other constraints in order to leave ourselves with just two adjustable functions.
The second difficulty with (4) gives us the additional constraints to resolve the first difficulty. Although

(4) solves the equations of motion for the interior points, it does not necessarily solve the equations of motion
for the membrane (1,3). These conditions translate into relations among the t()’s and a()’s which will allow
us to eliminate the extra freedom while satisfying the equation of motion for all points in the system.

3.3.2 Imposing conditions at the boundary

Substituting (4) into the consistency boundary condition (1) gives,

t0((x = 0)− c0t) + a0((x = 0) + c0t) = t1((x = 0) + c1t) + a1((x = 0)− c1t)

t0(−c0t) + a0(c0t) = t1(c1t) + a1(−c1t), (5)

where we have used the fact that (1) applies only at the membrane point x = 0. This gives one equation for
the four adjustable functions, with which we could eliminate one function, leaving three adjustable functions.
We thus require only one more relation among the four unknown functions.
To generate this relation, we next substitute (4) into the force balance boundary condition (3),

B0 (t
′

0(x− c0t) + a′0(x+ c0t)|x=0 = B1 (t
′

1(x+ c1t) + a′1(x− c1t)|x=0

B0 (t
′

0(−c0t) + a′0(c0t)) = B1 (t
′

1(c1t) + a′1(−c1t)) , (6)

where f ′(u) indicates the derivative of the function f(u) with respect to its argument. We now have one
additional equation, but have introduced four additional functions, the derivatives t′0, a

′

0, t
′

1, and a′1. This
leaves us in the undesirable position of having two equations in eight unknown functions. But, if we integrate
both sides of (6) with respect to time, we can eliminate the derivatives, and have the second equation which
we need among just the original four adjustable functions. To integrate, we guess at the result, check our
guess by taking the derivative, and then insert constants as needed to make the result match the original
equation. This procedure gives

B0

(

1

−c0
t0(−c0t) +

1

c0
a0(c0t)

)

= B1

(

1

c1
t1(c1t) +

1

−c1
a1(−c1t)

)

+ C, (7)

where C is the constant of integration and the factors ±1/c0,1 have been inserted to ensure that the derivative
of (7) with respect to time is precisely (6). To determine the value of the integration constant, we consider
what happens before any waves are introduced, t → −∞. For pulses of finite width, t(±∞), a(±∞) → 0.
Thus, the integration constant above must be C = 0, and we may ignore it safely.
As a final simplification, we note that we can write both sides in terms of the combinations of constants

Z0 =
B0

c0
(8)

Z1 =
B1

c1
.

Because this combination of constants appears so frequently in the study of waves, it has a special name, the
impedance. Because c =

√

B/ρ, the impedance is often written in the equivalent form Z = B/c = (ρc2)/c =
ρc.5 With these definitions, we then rewrite (7) compactly as

Z0 (−t0(−c0t) + a0(c0t)) = Z1 (t1(c1t)− a1(−c1t)) . (9)

5For sound we find the combination Z ≡ τ/c = (µc2)/c = µc on each side of the equation. In electromagnetic theory, we

find Z ≡ (1/µ)/c = (1/µ)/
√

1/(εµ) = εc.
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Finally, we can use the two equations (5) and (9) to eliminate two of the adjustable functions. Because,
as mentioned above, we generally study what comes out from the boundary given what goes into it, the
standard choice is to use the boundary conditions to solve for the two “away” functions in terms of the two
“toward” functions. To solve for a0, we choose a linear combination of (5) and (9) which eliminates a1,
Z1×(5)+(9):

(Z1 − Z0)t0(−c0t) + (Z1 + Z0)a0(c0t) = 2Z1t1(c1t)

⇒

a0(c0t) =
Z0 − Z1

Z0 + Z1
t0(−c0t) +

2Z1

Z0 + Z1
t1(c1t) (10)

Similarly, to find a1, we take the linear combination which eliminates a0, Z0×(5)−(9):

2Z0t0(−c0t) = (Z0 − Z1)t1(c1t) + (Z0 + Z1)a1(−c1t)

⇒

a1(−c1t) =
Z1 − Z0

Z0 + Z1
t1(c1t) +

2Z0

Z0 + Z1
t0(−c0t). (11)

3.3.3 Interpretations

Eqs. (10,11) give all the information about the “away’ traveling functions. If, for instance, we wanted to
know the value a0(3m), we could look at (10) at time t = (3m)/c0, to find that

a0(3m) =
Z0 − Z1

Z0 + Z1
t0

(

−c0
3m

c0

)

+
2Z1

Z0 + Z1
t1

(

c1
3m

c0

)

=
Z0 − Z1

Z0 + Z1
t0 (−3m) +

2Z1

Z0 + Z1
t1

(

c1
c0
· 3m

)

.

In more general terms, if we wanted to learn something about the value of a0(u) for any point u, we would
look at (10) at the time t = u/c0, to find

a0(u) =
Z0 − Z1

Z0 + Z1
t0(−u) +

2Z1

Z0 + Z1
t1(

c1
c0
u). (12)

Note that this analysis corresponds precisely to the mathematical “trick” introduced in lecture of defining
u = c0t. Following the same logic, to find the value of a1(v) for any point v, we should look at time t = −v/c1
to learn from (11) that

a1(v) =
Z1 − Z0

Z0 + Z1
t1(−v) +

2Z0

Z0 + Z1
t0(

c0
c1
v). (13)

To interpret the results (12-13),6 we note that the pulse a0 (a1) traveling away from the interface into
Region 0 (Region 1) has two contributions. The first comes from t0 (t1), the pulse originally traveling in
Region 0 (Region 1) toward the interface, which evidently has been reflected by the interface back into
Region 0 (Region 1). The “−u” (“-v”) in the argument of this pulse tells us that the reflected pulse is
flipped horizontally, corresponding to the physical observation that the leading edge of a pulse should be the
first part that returns in a reflection. The reflected pulse is also scaled vertically by a “reflection amplitude”
which we denote R0→1 = (Z0−Z1)/(Z0+Z1) (R1→0 = (Z1−Z0)/(Z0+Z1)) to indicate reflection of a pulse
traveling from Region 0 toward Region 1 (from Region 1 toward Region 0).
The second contribution to a0 (a1) comes from the pulse t1 (t0) originally traveling in Region 1 (Re-

gion 0) toward the interface, which is evidently then transmitted into Region 0 (Region 1). The “(c1/c0)u”
(“(c0/c1)v”) in the argument of this pulse tells us that the transmitted pulse is horizontally stretched out by
a factor of c0/c1 (c1/c0). This corresponds to the physical observation that a pulse entering a region of higher
wave speed will be stretched out as the leading edge of the pulse rushes ahead into the new region where

6Rather than writing the same two paragraphs twice, once for a0 and once for a1, we have written this paragraph just once
for a0, including everything that we would say differently for a1 in parentheses.
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the waves move faster. Finally, the transmitted pulse is scaled vertically by a “transmission amplitude” for
pulses which we shall denote T1→0 = (2Z1)/(Z0+Z1) (T0→1 = (2Z0)/(Z0+Z1)) to indicate transmission of
a pulse from Region 1 into Region 0 (from Region 0 into Region 1),
The primary lessons of the above two paragraphs are that, in traveling from medium a to medium b,

regardless of whether travel is from left to right or from right to left, reflected pulses always flip horizontally,
and transmitted pulses always stretch horizontally by a factor cb/ca, where ca and cb are the respective
wave speeds. (Note that, the pulse is actually compressed if this factor is a number less than one, like 0.8.)
Moreover, reflected pulses scale vertically by a reflection amplitude

Ra→b =
Za − Zb

Za + Zb

, (14)

and transmitted pulses scale vertically by a transmission amplitude

Ta→b =
2Za

Za + Zb

, (15)

where Za and Zb are the impedances of the respective materials.

3.3.4 Final form for general solution

Finally, we may substitute the forms (12,13) for the outward moving pulses into (4) to find a valid general
solution, one which satisfies the internal equations of motion for each region and for the membrane and which
contains the required number of adjustable parameters (two adjustable functions). Using the definitions
(14,15) of the various reflection/transmission amplitudes, the final result is

s0(x ≤ 0, t) = t0(x− c0t) +R0→1t0 (−(x+ c0t)) + T1→0t1

(

c1
c0
(x+ c0t)

)

(16)

s1(x ≥ 0, t) = t1(x+ c1t) +R1→0t1 (−(x− c1t)) + T0→1t0

(

c0
c1
(x− c1t)

)

.

4 Particular Solutions

From the final general solution (16), it is relatively easy to determine particular solutions for when a single
pulse is incident either from Region 0 or Region 1, thereby confirming the interpretations giving in Sec-
tion 3.3.3. For instance, if a pulse of shape f(u) comes in from Region 0, then t0(u) = f(u) and t1(v) = 0.
Thus,

s0(x ≤ 0, t) = f(x− c0t) +R0→1f (−(x+ c0t)) (17)

s1(x ≥ 0, t) = T0→1f

(

c0
c1
(x− c1t)

)

,

Thus, we have a reflected pulse, horizontally flipped and vertically scaled by R0→1, traveling to the left in
Region 0 with speed c0, and we have a transmitted pulse, stretched horizontally by c1/c0 and scaled vertically
by T0→1, traveling to the right in Region 1 at speed c1. Alternately, if a pulse of shape f(u) comes in from
Region 1, then t1(u) = f(u) and t0(v) = 0, and

s0(x ≤ 0, t) = T1→0f

(

c1
c0
(x+ c0t)

)

(18)

s1(x ≥ 0, t) = f(x+ c1t) +R1→0f (−(x− c1t)) .

In this case, we then have a reflected pulse, horizontally flipped and vertically scaled by R1→0, traveling to
the right in Region 1 at speed c1, and a transmitted pulse, horizontally stretched out by a factor c0/c1 and
vertically scaled by T1→0, traveling to the left in Region 0 at speed c0.
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