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1 Introduction

The previous set of notes “Reflection and Transmission at a Change in Medium,” determined the form
of scattered, either transmitted and reflected, pulses at a change in medium by working with the general
solution to the wave equation. As we shall see below, for the special case of incoming traveling waves of
sinusoidal form, the form of transmission and reflection may be determined directly by an appeal to general
physical principles. Because all incoming pulse shapes may ultimately be decomposed into a sum of sinusoidal
functions by a mathematical procedure called Fourier analysis, by studying scattering of sinusoidal functions
one can in fact determine the form of scattering for any pulse shape. Although we shall not study Fourier
analysis in this course, it is still useful for us to study scattering amplitudes for sinusoidal pulses at a change
in medium because, as we have seen, reflection and transmission amplitudes are independent of the incoming
pulse shape. Thus, for any shape pulse, the transmission and reflection scattering amplitudes will be exactly
what we compute for sinusoidal pulses.

We also study scattering of sinusoidal pulses at a change in medium because this problem reveals far
more general ideas which may be applied to find the solution to the equations of motion for any system
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driven by an incoming wave of fixed frequency, such as the interference and diffraction setups which we shall
study in the next set of notes, “Interference and Diffraction.”

2 Complex representation for traveling waves

To introduce the use of the complex representation for waves, we first consider a sinusoidal pulse of the form

f(u) = A cos(ku+ φ0) = Re
(

Aeiku
)

, (1)

where A ≡ Aeiφ0 is a complex amplitude. Note that (1) is in exactly analogous form to what we did
previously in the time domain for simple harmonic motion. The only difference is that now we are in the
space domain, so that instead of angular frequency ω and time t, we use wave vector k and position u.

Next, we consider the form of a traveling wave solution made from such a pulse,

s(x, t) = f(x− ct)

= Re
(

Aeik(x−ct)
)

= Re
(

Aeikxe−ickt
)

= Re
(

Aeikxe−iωt
)

= Re
(

e−iωtAeikx
)

= Re
(

e−iωtQ(x)
)

, (2)

where we have used the dispersion relation ω = ck and defined the complex amplitude at position x to be

Q(x) ≡ Aeikx. (3)

The final line above shows that the motion at each point x in such a traveling wave is just simple harmonic
motion in time at the wave frequency ω, with an amplitude and phase determined by Q(x). Specifically,

s(x, t) = Re
(

e−iωtQ(x)
)

= Re
(

e−iωt
∣

∣Q(x)
∣

∣ e
iφQ(x)

)

= Re
(

∣

∣Q(x)
∣

∣ e
−i(ωt−φQ(x))

)

=
∣

∣Q(x)
∣

∣ cos
(

ωt− φQ(x)

)

.

Thus, Q(x) determines completely the motion of point x as simple harmonic motion with amplitude
∣

∣Q(x)
∣

∣

and phase −φQ(x). In the next section, we will find that the solution for wave propagation problems with

input waves at a fixed frequency ω always has the form (2), so that determining the solution for the motion
of the system boils down just to finding the complex wave amplitude function Q(x).

An important way of understanding the complex amplitude function Q(x) is to consider changes in the
motion of a wave wave relative to its motion at a reference point a. To do this, we rewrite (2) as

s(x, t) = Re
(

[

e−iωtAeika
]

eik(x−a)
)

, (4)

where the term in square brackets represents what we would have for the motion at the point a, and the
factor eik(x−a) represents the change in the motion in going from the point a to the point x. Because the
motion at all points is simple harmonic, the only possible differences in the motion as we go from point to
point are in the amplitude or in the phase of the motion.

In the plane wave motion we consider here, a traveling wave moves along as a fixed shape, and so we
expect the amplitude of the motion, (max – min)/2, to be constant for each point in space. (As waves
spread outward from a point, as in the next set of notes, we in general can expect a decay in amplitude with
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distance.) The constantness of the amplitude corresponds to the fact that the propagation factor eik(x−a)

has amplitude
∣

∣eik(x−a)
∣

∣ = 1. Next, we generally do expect there to be a change in phase when moving from
the point a to the point x because there is a time delay for maxima passing a to reach x. The time delay
for traveling the distance L = x− a is L/c. To convert this to a phase in radians, we measure the delay in
periods and multiply by 2π: ∆φ = 2π(L/c)/T = (ω/c)L = kL, precisely the phase appearing in the phase
factor eik(x−a). Thus, the propagation factor eik(x−a) corresponds precisely to the phase delay as wave peaks
pass a propagating along to x. Note that the above argument is unaffected by whether the distance L is
traveled from left to right or from right to left. We thus have the following rule,

Propagation factor:

The effect of propagating a wave a distance L (measured as a positive value whether the wave
moves to the right or left) appears in the complex representation as multiplication by the complex
phase factor eikL. For plane waves and waves moving in one dimension, this is the only factor.
If the wave spreads out from a point in two or three dimensions, there in general may also be an
amplitude decay factor.

3 Solutions for waves at an interface

The previous set of notes “Reflection and Transmission at a Change in Medium,” gives the general solution
for waves at a change in medium from Region 0 (x < 0) to Region 1 (x > 0) as

s0(x ≤ 0, t) = t0(x− c0t) +R0→1t0 (−(x+ c0t)) + T1→0t1

(

c1
c0
(x+ c0t)

)

(5)

s1(x ≥ 0, t) = t1(x+ c1t) +R1→0t1 (−(x− c1t)) + T0→1t0

(

c0
c1
(x− c1t)

)

.

Our strategy is to begin with this form, investigate what it looks like in the complex representation, and
then see how we could immediately write down the result in the complex representation.

Sending a sinusoidal pulse in from Region 0 (x < 0) toward Region 1 corresponds to the case

t0(u) = Re
(

Aeik0u
)

(6)

t1(v) = 0, (7)

where we use the subscript on k0 to be sure to label it as the wave vector in Region 0.

3.1 Region 0

According to (5), the solution at any point x0 in Region 0 thus has the form

s0(x0 ≤ 0, t) = t0(x0 − c0t) +R0→1t0(−(x0 + c0t))

= Re
(

Aeik0(x0−c0t)
)

+R0→1Re
(

Aeik0(−(x0+c0t))
)

= Re
(

Aeik0x0e−ik0c0t +R0→1Ae
−ik0x0e−ik0c0t

)

= Re
(

e−iωtA
(

eik0x0 +R0→1e
−ik0x0

))

= Re
(

e−iωtQ
0
(x0)

)

, (8)

where the wave frequency is ω = k0c0, and we define a complex amplitude for the wave solution in Region 0
to be

Q
0
(x0 ≤ 0) ≡ A

(

eik0x0 +R0→1e
−ik0x0

)

. (9)

Conveniently, we find the total solution in Region 0 to be of the form (2) of simple harmonic motion at the
incoming wave frequency. This is just the general consequence of the fact that the response of a system
driven at frequency ω is motion at that same frequency. Given this knowledge, the complex amplitude
Q

0
(x0) then determines entirely the motion for Region 0.
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Figure 1: Scattering (reflection and transmission) from a change in medium from Region 0 (x < 0) to
Region 1 (x > 0).

To write this result down directly using the complex representation, we consider the motion at each point
x0 relative to the motion associated with the incoming wave at point a, which from our previous discussion
we know to be Re

(

e−iωtAeik0a
)

for some complex amplitude A. We expect two waves contribute to the
motion at each point x0 < 0, the incoming wave and the reflected wave. (See Figure 1.) By the principle of
superposition, the final motion will be the sum each of these.

The motion due to the incoming wave at point x0, a distance L = (x0− a) from the point a, will include
an additional propagation factor of eik0(x−0−a). The first contribution to the motion at x0 is thus

Re
(

e−iωtAeik0a · eik0(x0−a)
)

.

The second contribution comes from the reflected wave. To compute this contribution at point x0, we
make a number of relative comparisons. First, we compare the motion of the incoming wave at a to the
motion of the same wave at the interface, x = 0. The distance propagated is now L = (0− a) = −a, and so
we must include a factor of eik0(−a) to find the motion of the incoming wave at x = 0. Next, we know that
the motion of the reflected wave at the interface matches the motion of the incoming wave at the interface,
except for the reflection amplitude factor R0→1. Thus, the motion of the reflected wave at x = 0 is just
the motion of the reference point times two correction factors, eik0(−a) and R0→1. Finally, relative to the
motion of the reflected wave at x = 0, the motion induced by the reflected wave at x0, must contain one
final propagation factor eik0(−x0). Thus, the reflected wave contribution to the motion at x0 is

Re
(

e−iωtAeik0a · eik0(−a) ·R0→1 · eik0(−x0)
)

.

Adding our two contributions together, we find that we are able to directly write a result equivalent to (8),

s0(x0, t) = Re
(

e−iωtAeik0a ·
[

eik0(x0−a) + eik0(−a) ·R0→1 · eik0(−x0)
])

.

3.2 Region 1

Eq. (5) also gives the solution in Region 1,

s1(x1 ≥ 0, t) = T0→1t0

(

c0
c1
(x1 − c1t)

)
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= T0→1Re

(

Ae
ik0

(

c0
c1

(x1−c1)
)

)

= Re
(

AT0→1e
i

c0k0
c1

x1e−ic0k0t
)

= Re
(

AT0→1e
ik1x1e−iωt

)

= Re
(

e−iωtAT0→1e
ik1x1

)

= Re
(

e−iωtQ
1
(x1)

)

, (10)

where, in the second line from the bottom, we have used the dispersion relation of Region 1 to identify
(c0/c1)k0 = ω/c1 as just the wave vector k1 from Region 1. Also, in the last line we define a new complex
amplitude for the wave motion in Region 1,

Q
1
(x1 ≥ 0) ≡ AT0→1e

ik1x1 . (11)

Thus, we once again find that all points in the system respond with simple harmonic motion at the same
driving frequency ω, so that knowledge ofQ

1
(x1) completely determines the motion in Region 1. For instance,

the amplitude of the motion for each point in Region 1 is
∣

∣

∣
Q

1
(x1)

∣

∣

∣
=
∣

∣AT0→1e
ik1x1

∣

∣ = |A| · |T0→1| ·
∣

∣eik1x1
∣

∣ =

|A| · |T0→1|, just the amplitude of the incoming wave times the magnitude of the transmission amplitude.
Finally, we see that we can again write this result directly in terms of relative complex amplitudes.

Relative to the motion at point x = a, the motion of the transmitted wave at x1 should contain a factor
of eik0(−a) to give the motion of the incoming wave at x = 0, a factor of T0→1 to give the motion of the
transmitted wave at x = 0 relative to the motion of the incoming wave at the same point, and a factor of
eik1x1 to give the motion of the traveling wave after propagating the distance |L| = x1− 0 from x = 0 to the
point x1. We thus can immediately write a result equivalent to (10),

s1(x1, t) = Re
(

e−iωtAeik0a ·
[

eik0(−a) · T0→1 · eik1x1

])

.

Note that in the case we do not have a sum of terms because only a single wave contributes to the motion
in Region 1. (See Figure 1.)

3.3 General Lesson

Generally, we can find the complex wave amplitude at any point in a problem by summing the amplitudes
for all waves which contribute at a given point (principle of superposition), where we determine the complex
amplitudes for these waves by comparing the motions of the different waves at different points in space,
including a factor for each comparison. Each of these comparisons may be thought of as fundamental event
in the history of how the wave began at the reference point and ended up at the final observation point. Such
fundamental events include propagation from point a to point b, and reflection or transmission at boundaries.

This perspective allows us to summarize our general lesson as

Sum over histories:

The complex amplitude for wave motion at point x equals the complex amplitude of the incoming
wave at a reference point a, times the sum of the amplitudes for each possible history h for how
the incoming wave can get from a to x. The amplitude associated with each history is the product
of the complex amplitudes a(e) for each fundamental event e in that history. Mathematically,

Q(x) = Q(a)
∑

h

(

∏

e∈h

a(e)

)

. (12)

Here, a(e) = eik|b−a| for an event e of propagation from point a to point b, and ae is the
corresponding reflection or transmission amplitude for a scattering event.
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4 Using the complex representation to find scattering amplitudes

Now that we are able to write down the forms (8) and (10) directly, it is then a relatively simple matter to
compute scattering amplitudes such as T0→1 and R0→1 directly from the boundary conditions. For notational
convenience, in this section we shall drop the writing of the subscripts “0→ 1” and refer to these amplitudes
as T and R, respectively. Eqs. (8,10) then become

s0(x ≤ 0, t) = Re
(

e−iwtA
[

eik0x +Re−ik0x
])

(13)

s1(x ≥ 0, t) = Re
(

e−iwtA
[

Teik1x
])

Substituting (13) into the consistency condition, s0(x = 0, t) = s1(x = 0, t), we find

Re
(

e−iwtA
[

eik0·0 +Re−ik0·0
])

= Re
(

e−iwtA
[

Teik1·0
])

Re
(

e−iwtA [1 +R]
)

= Re
(

e−iwtA [T ]
)

,

so that
Re
(

e−iwtA [1 +R− T ]
)

= 0.

Now, Re
(

e−iωtQ
)

can only be zero for all times t if the harmonic motion which it represents has zero
amplitude, which implies Q = 0. We thus conclude 1 +R− T = 0, so that

1 +R = T (14)

Next, substituting (13) into the force balance condition, B0∂s0(x = 0, t)/∂x = B1∂s1(x = 0, t)/∂x, we
find

B0Re
(

e−iwtA
[

ik0e
ik0·0 − ik0Re

−ik0·0
])

= B1Re
(

e−iwtA
[

ik1Te
ik1·0

])

Re
(

e−iwtAB0 [ik0 − ik0R]
)

= Re
(

e−iwtAB1 [ik1T ]
)

,

where the factors of ik come down as we take the derivatives with respect to x before substituting x = 0.
Combining terms we find

Re
(

e−iwtAi [B0k0(1−R)−B1k1T ]
)

= 0,

for all times t. Following the same logic which led to (14), we find

B0k0(1−R) = B1k1T.

Using the fact that Bk = B(ω/c) = Zω, this simplifies to

Z0ω(1−R) = Z1ωT

Z0(1−R) = Z1T. (15)

Finally, to find the reflection and transmission amplitudes, we combine (14) and (15). To find T , we take
Z0×(14)+(15):

2Z0 = (Z0 + Z1)T.

This gives precisely our previous result,

T =
2Z0

Z0 + Z1
.

And, to find R, we take Z1×(14)−(15):

(Z1 − Z0) + (Z1 + Z0)R = 0.

Again, we find our previous result,

R =
Z0 − Z1

Z0 + Z1
.
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Figure 2: Transmission of waves through a barrier on a string

5 Example of sum over histories

As a more involved example of the sum over histories, consider transmission of waves of wave vector ka on
a string a of tension and mass per unit length τ and µa through a barrier made up of a short segment of a
heavier string of mass per unit length µb > µa and length b. (See Figure 2.) Note that because the segments
of the string are in equilibrium before we allow any wave motion, the horizontal tensions τ in all segments
must be equal.

The relevant quantities for propagation in this problem are the respective wave speeds, ca =
√

τ/µa and

cb =
√

τ/µb, and the impedances,

Za ≡ µaca =
√
τµa (16)

Zb ≡ µbcb =
√
τµb.

We also require the wave vector in the heavy region, which we determine from the fact that the response of
the system in all regions will be at the same frequency as the incoming wave. Thus, caka = ω = cbkb, so
that

kb =
ca
cb
ka =

(
√

µb
µa

)

ka. (17)

Finally, we will need the following scattering amplitudes,

Rb→a =
Zb − Za
Za + Zb

(18)

Ta→b =
2Za

Za + Zb

Tb→a =
2Zb

Za + Zb

With the above quantities defined, we can now compute the transmission amplitude for passing through
the barrier. Following (12), we must consider all possible histories contributing to transmission through the
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barrier. The first three of these appear in the figure. In the first history, h1, the wave transmits from string
a to b, picking up a transmission amplitude factor Ta→b, propagates across from x = 0 to x = b, picking
up a phase factor p ≡ eikbb, and finally transmits from string b to string a, picking up a final transmission
amplitude factor Tb→a. The first contribution to the transmitted wave is thus Ta→bpTb→a.

The next contribution, h2, comes from when the wave transmits from a to b, propagates across, but then
reflects at the interface from b to a at x = b, picking up a new factor of Rb→a. This wave then propagates
back across from x = b to x = 0, picking up the same phase factor p ≡ eikbb as before because the distance
propagated is the same. At x = 0, the wave then reflects again with a factor Rb→a, propagates back across
the barrier with a factor of p, and finally transmits from b into a with a factor of Tb→a. The contribution
from this history is the product of all of these factors, Ta→bpRb→apRb→apTb→a.

There is then a third contribution, h3, which involves yet another ricochet in between the barriers. After
this contribution, there is actually an infinite sequence of terms hn>3, each involving one more ricochet than
the previous term in the sequence.

Combining all of these terms, we thus write (12) for this case as

Q(b) = Q(0)
∑

h

(

∏

e∈h

ae

)

= Q(0) [h1 + h2 + h3 + . . .]

= Q(0) [Ta→bpTb→a + Ta→b (pRb→apRb→a) pTb→a + Ta→b (pRb→apRb→a) (pRb→apRb→a) pTb→a + . . .]

= Q(0)Ta→bpTb→a

[

1 + (pRb→apRb→a) + (pRb→apRb→a)
2
+ . . .

]

= Q(0)
Ta→bpTb→a

1− (pRb→apRb→a)
,

where in the last step we use the calculus result for the sum of an infinite geometric series 1+ r+ r2 + . . . =
1/(1 − r). Note that in the analysis above, we could at any step have simplified pRb→apRb→a = p2R2

b→a.
We have chosen not to do so only as a way of reminding ourselves of the sequence of events underlying each
term in the series.

Finally, the net transmission amplitude for the barrier, Tbarrier ≡ Q(b)/Q(0), is thus

Tbarrier =
Ta→bpTb→a

1− p2R2
b→a

, (19)

where p ≡ eikbb and all other relevant quantities are defined in (16-18).
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