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1 Introduction

The previous set of notes illustrated the ubiquity of wave behavior by showing that the displacements in
strings and sound (y and s, respectively) and that the electromagnetic fields in vacuum (E,, By, E,, B.) all
satisfy the same wave equation,

0? 0?

= =P, (1)

ot? Ox?
where ¢ represents either y, s or E, (or By, E., or B;) for strings, sound or electromagnetic systems,
respectively. We now turn to the problem of finding a general solution to this equation. Once we have such
a solution, we are then able to explore readily all possible wave solutions and therefore all possible wave
phenomena.



Along the way to the general solution, we shall also discover a new, important sub-class of solutions
to the wave equation, traveling waves'. These traveling solutions will clarify greatly why we interpret the

constant ¢ in the wave equation (1) to be the wave speed.

2 Pulse equations

To find a general solution to an equation such as (1), it generally behooves us to simplify it first. The wave
equation (1) appears as though it could be simplified by taking its “square root.” In solving any kind of
equation, we certainly always are allowed to take a guess at a simplification, so long as we check that it is
correct in the end. Our guess at a “square root” is the following equation, which we shall call the pulse
equation,

dq Jq .
i :FC@_ Pulse equation. (2)

Note that in taking the “square root”, we have been careful to include both possible choices of sign so that
there are really two pulse equations, one for each sign.

To check that we have made a proper simplification, we now verify that any solution to either pulse
equation (either the “—” or the “4” version) is also guaranteed to solve the wave equation. To do this, we
are allowed to assume at each step that we satisfy the pulse equation (2) and try to prove that ¢ satisfies

the wave equation (1):
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where we have used the fact that (—1)(—1) = (1)(1) = 1. The fact that we were able to prove that ¢(x,t)
solves the wave equation by assuming only that it solves either pulse equation means that, indeed, if we ever

have a solution to the pulse equation we know also automatically that it solves the wave equation!

3 General solutions to pulse equations

We now consider what sorts of functions satisfy the pulse equation. Apart from the factor of Fe, the pulse
equation (2) says that the t-derivative of q(z,t) gives exactly the same result as the z-derivative. A good
guess for a solution is some function of x 4+ ¢ because then, when we apply the chain rule, we will get the
same function back times either 9/dz or /0t of (x 4 t), which are both just one. Actually, however, the
pulse equation says that we want the time derivative to give back an extra factor of F¢. Thus, a guess for a
very general type of solution to the pulse equation would be

q(x,t) = f(x Fct), ; general solution to (2) (3)

where f() is any function whatsoever!

IWe already explored one other type of solution in Class Notes II, standing waves.



To verify the above as a solution, we take the appropriate derivatives and check the pulse equation (2),
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which proves that our form (3) for ¢(z, t) indeed solves (2). Moreover, because of our discussion in Section 2,
we know that these solutions also solve the wave equation!

To interpret these solutions, consider Figure 1. Figure 1a shows the solution at time ¢ = 0, which is just
a picture of the function f() because q(z,t =0) = f(z F ¢-0) = f(x). Figure 1b shows the solution for the
“—" version of the pulse equation at some time ¢ later: ¢(z,t =0) = f(z — ¢-t) = f(x — a), where we have
defined a = ct. As the picture illustrates, this is just exactly the same shape but shifted to the right? by the
distance a = ct. Similarly, Figure 1c shows the solution for the “+” version of the equation at some time ¢
later: q(z,t =0) = f(z+c-t) = f(x + a), where we again have defined a = ct, which is just the same shape
but shifted rigidly to the left® by a = ct. Thus, our solutions to the the “~” and “+” versions of the pulse
equation represent pulses, shapes which shift rigidly to the right or left, respectively, with constant speed
v =a/t = (ct)/t = c. This is precisely why we have always referred to c as the wave speed and why we refer
to (2) as the left/right pulse equations.

Given that our solutions (3) to the left/right pulse equations are in terms of a completely undetermined
function f(), they are indeed quite general. But, are they truly gemeral solutions? As discussed in Class
Notes I, “ ‘Simple Harmonic’ Motion (SHM),” a general solution not only solves the equation of motion,
but also does so with a number of adjustable parameters (unspecified constants which may take any value)
equal to one for each order of time derivative appearing for each degree of freedom. The equation of motion
for the simple harmonic oscillator was second-order in time, and therefore the general solution requires two
adjustable parameters for each degree of freedom. As there is only one degree of freedom, “x”, the general
solution for the simple harmonic oscillator has two adjustable parameters.

The pulse equations, on the other hand, are first-order in time. Therefore, a general solution must have
one adjustable parameter for each degree of freedom. In the pulse equations, as in the wave equation, the
degrees of freedom are the values g(x) which specify the configuration of the system (position of a string,
displacement of the air, value of the electric field, etc.) at any given instant in time. Now, g¢(x), which
could be any function of z, actually specifies a large number of values, one value of ¢ for each value of x.
There is therefore one degree of freedom for each point . Correspondingly, for a general solution, we need
one adjustable parameter for each point 2. Note that we emphasized that f() in (3) could be any function
whatsoever. This means that we can pick any value of f(z) for each point x and still have a solution. The
values f(z) for each x are, therefore, adjustable, and we have precisely one adjustable parameter, the value
f(z) for each x, for each degree of freedom. The general solutions to (2) are therefore (3).

2To see that f(z — a) is shifted to the right, note that the value f(0), which occurred at = = 0, now occurs at = a.
370 see that f(x + a) is shifted to the left, note that the value f(0), which occurred at = 0, now occurs at = —a.
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Figure 1: Time evolution of solutions to the pulse equations: (a) solution at ¢ = 0, (b) right-ward or
solution at time ¢ > 0, (c) left-ward or “+” solution at time ¢ > 0.
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4 Superposition and general solution to wave equation

To find the general solution to the wave equation, we first prove an important lemma which has many useful
applications in the theory of waves, the principle of superposition. Much like the principle of superposition
which you learned in your introductory course on E&M, this principle allows us to quickly solve complex
problems by breaking them into smaller parts for which we know the solutions.

Principle of superposition of waves — If yi(z,t), y2(z,t), ...all solve the wave equation, then
the sum y(z,t) = y1(z,t) + y2(z,t) + ... is another valid solution.

Proof: To verify that y(z,t) is a solution, we compute 9%y/dt? and check whether it indeed equals
c29%y/0z2. During our computation, we are allowed to use the facts that 9%y, /0t? = 20y, /02, 8%y, ) Ot? =

c20y2 /022, ..., because the assumption of the lemma is that y;, y2, ..., are all solutions. The result is
?y(x,t 02 ..
% = 3B (y1(x,t) +ya(z,t) +...) ; definition of y(xz, t)
2 82
= ah (z,t)+ ETPLL (z,t)+... ;sum rule for derivatives
0? 0?
= (CQ@yl(x,tO + <c2wy2(x,t)> +... ui(z,t), ya(x,t), ..., are solutions

0? 0? )
= <@y1 (z,t)+ wyg(x, H)+... ; factoring out c?
2

C2W (y1(z,t) + y2(z,t) +...) ; sum rule for derivatives
z
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and so y(z,t) indeed solves the wave equation.

To find a general solution to the wave equation, we note that the solutions to the pulse equation f(x Fct)
both automatically solve the wave equation®, but each only has one adjustable parameter for each degree
of freedom. The wave equation is second-order in time and therefore requires two adjustable parameters for
each degree of freedom. Thus, although each general solution to the pulse equation has insufficient adjustable
parameters to be a general solution to the wave equation, by superposing two pulses, one left-ward and one
right-ward,

y(x,t):f(x—ct)+g(x+ct), (5)
we are guaranteed to have a general solution to the wave equation. First, by superposition, we know we
have a solution. Second, we will then have two adjustable parameters for each degree of freedom, one value
of f(z) and one value of g(x) for each value of x.

5 Finding particular solutions

As with the simple harmonic oscillator, the great power of having the general solution is that we now can
find the particular solution for any problem without solving complicated differential equations but by solving
for the adjustable parameters in the general solution. The basic strategy is the same as with the harmonic
oscillator: “(1) write each condition in terms of the general solution, (2) solve the resulting set of equations
for the adjustable parameters, and (3) write down the general solution while substituting the particular
values found for the adjustable parameters.”’

Although the strategy is the same, following this procedure is more challenging in the case of waves,
particularly because the “adjustable parameters” are actually now unknown functions, f() and g(). We
therefore shall work through two different examples: first, when we are given the initial position and initial
velocity of every chunk of the system, and, second, when a pulse collides with a boundary.

4Recall that any solution to the pulse equation also solves the wave equation.
5From “Class Notes I”.



5.1 Particular solutions from initial conditions

Suppose that we are given the value and velocity of the wave at time ¢ = 0: ¢(z,t = 0) = ¢o(z) and
dq(z,t = 0)/0t = vo(x)8, and we wish to determine g(x,t) the form of the wave at any time ¢ later. To do
this we follow the three-step procedure above.

1. Write each condition in terms of the general solution

The general solution is
q(x,t) = f(x —ct) + g(z + ct). (6)

In terms of this, the first initial condition is

flx—c-0)+glz+c-0)
= flz) +9(2), (7)

and so we learn that the sum of the two unknown functions gives us the initial configuration of the
system. The second condition is
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(—=o)f'(x—c-0)+ (¢)g' (x +c-0)
c(g'(x) — f'(z)), (8)

and so we learn that the wave speed times the difference of the derivatives of the two unknown functions
gives us the initial velocities throughout the system.

Interpretation of the two results (7,8) sometimes causes confusion because the variable ¢ appears in the
general solution (6) but not in the results. The best way to understand our results is to think of (7,8)
as giving relationships between the various adjustable parameters, values of the the functions f() and
g(). Eq. (7), for instance, says that when adding the values f(3) and ¢(3), one gets ¢o(3), and so forth
for all possible values. Speaking very generally, and not thinking specifically about points in space, we
could have used any value u in place of the number 3. Thus, a less confusing way of thinking about
(7) would be to write

qo(u) = f(u) + g(u), 9)

so that we don’t get hung up thinking about positions in space z or time ¢. Similarly, to avoid confusion,
it is best to write (8) as

vo(u) = c(g'(u) — f'(u). (10)
2. Solve the resulting set of equations for the adjustable parameters —

For waves, the functions f() and ¢() give the adjustable parameters, and so for this step, we must solve
(9) and (10) for f(u) and g(u).

We begin by simplifying (10). Integrating both sides with respect to u, we find
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where C is a constant of integration and [ vo(u) du is the anti-derivative of the function vo(u).
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SFor concreteness, it may help to think of the example of the string. For the string (as with any mechanical system), you
generally need to know both the location yo(x) and velocity vo(x) of each particle (chunk) at time ¢ = 0 in order to predict
where all of the particles will be at any time ¢ in the future.



Now, by adding and subtracting, respectively, the two equations (9) and (11), we find
1 C
qo(u) + - /vo(u) du + =

qo(u)—l/vo(u)dufg = 2f(u).

Cc c

2g(u)

Finally, dividing through by 2, we have the two unknown functions,

flu) = % <<J0(U) - %/vo(u) du) _¢

2
o) = 5 (w2 frotdn) + 5

(12)

3. Write down the general solution while substituting the particular values found for the adjustable pa-
rameters

Substituting the results (12) into the general solution, we find
q(z,t) = flz—ct)+g(z+ct)

= f(u)‘u:mfct + g(u)|u:w+ct
=

gz, t) = % (qo(u) - % / vo(u) du) o % (qo(u) + % / vo (1) du)

where the unknown integration constant C' has canceled out conveniently.

;o (13)

u=x+ct

The result (13) is somewhat abstract. To learn how to use it, consider an example of a string which is
initially “flat” (y(x,¢ = 0) = 0 for all x), but which has been given an initial “kick” near the origin so that
the initial velocity distribution is v, (z,t = 0) = w/(1 + (z/a)?). Now, to use (13), we need the following

integral,
/vo(u) du = /vy(u,t =0)du

_ /HEUW(ZU

w d
= a / 1T (/e ™ ; preparing for change of variables

(u/a)? a

= Q/HLZQdZ ;z2=u/a

= awarctanz
= awarctan (E) ; using def. of z. (14)
a

We also need the initial displacement, which was just zero in this case, go(u) = 0. Substituting this and the
integral (14) into the solution (13), we get the final result,

q(z,t) = E (qo(u) - % / vo (1) du) o + % (qo(u) + % / vo(u) du)
= (0 Fowacan (5))] 45 (04 awaretan ()

aw < <:c+ct) <xct>>
= — | arctan [ —— | — arctan .
2c a a
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u=x+ct

u=x—+ct
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Figure 2: Reflection of an incoming left-ward pulse of shape h(z) from a boundary at z = 0: (a) fixed
boundary, (b) free boundary

5.2 Particular solution for reflection from boundaries

As another example of use of the general solution, we now consider an important wave phenomenon, reflection
from a boundary. Consider the situations in Figures 2a and b, in which an initial left-ward pulse of shape
h(z) heads toward a boundary at = 0 with either fixed (¢(z = 0,t) = 0) or free (9q(xz = 0,t)/0t = 0)
boundary conditions, respectively.

In order to determine what the system will do at later times, we use the fact that the general solution,
by definition, describes all possible behaviors of the string. Thus, we know that the equation

q(z,t) = f(x — ct) + g(z + ct) (15)

describes behavior of the string at any later time ¢. (Note that whatever this equation gives for < 0 is
just a mathematical fiction as the system ends at the boundary at = 0.) Our task, therefore, reduces to
finding the values of the unknown functions f(u) and g(u) at all possible values of their argument u. Again,
we use “u” instead of “a” to remind ourselves that the values f(u) and g(u) for each u really are unknown
parameters and not tied to any particular point in space or time.

To find the unknown functions, we again use the initial conditions. There is now an additional condition
which we must take into account, however. Recall that the presence of a boundary implies that the point on
the boundary does not obey the same equation of motion as the other points, but rather a special equation
which we called the boundary condition. This means that the general solution to the wave equation (15)
applies everywhere but on the boundary and so we must take the boundary condition

g(x=0,t) = 0 ;fixed boundary at = 0: case (a)



dq(z =0,1)
Ox

into account explicitly as an addition condition.

The initial condition was simply the presence of a left-ward moving pulse of shape h(z). This we will get
if we take g(u) = h(u) because the second term of our solution will then be g(z + ct) = h(xz +ct), a left-ward
moving pulse of shape h(u). We thus have left only to find f(u), which we do by writing the boundary
condition explicitly in terms of our general solution.

For the case of a fixed boundary, using the fact that we already know that g(u) = h(u), we find

= 0 ;free boundary at z = 0: case (b)

0 = q(x=0,1)
= £(0—ct) 4+ h(0+ ct)
= f(—ct) + h(ct) (16)
= f(u) +h(—u) ; change of variables u = —ct
=
flw) = —h(—u). (17)

To understand the meaning of the change of variables, note that Eq. (16) just says, for instance, that
0 = f(=3) + h(3), and so, therefore, f(—3) = —h(3). Or that 0 = f(5) + h(=5), and thus f(5) = —h(-5).
The change of variables just allows us to say that this holds for all values, not just —3 and 5.

The interpretation of (17) is that, for this case of a fixed boundary, there is also a right-ward moving
pulse (i.e., a reflection) which the boundary generates. The shape of the reflection, as Figure 2a illustrates,
is just the same as that of the incoming pulse, ezcept that it is up-side down (the first minus sign in (17))
and left-right inverted (the second minus sign in the equation). To complete the solution for the case of a
fixed boundary, we substitute our results for f(u) and g(u) into the solution (15). In doing this, we note
that (17) says that when we want the value of f(u) at any point u, whether u be —3, 5 or x — ¢t, we just
put —h(—u). Thus, the solution for reflection from a fixed boundary is

q(z,t) = h(x +ct) —h(—(z —ct)). ; reflection from a fixed boundary (18)

The case of a free boundary is similar, but somewhat more complicated because of the derivative in the
boundary condition. Following the same procedure of substituting our solution into the boundary condition,
we find

0 = 9q(z = 0,t)
Ox
0

= 5, (@ —c)+h(z+ct)],_

= (f’ (z — ct)w + K (z+ ct)W) . ; chain rule

= (fflw—ct)-1+n(x+ct)-1)],_, ; taking partial derivs

= (f'(0—ct)+h'(0+ct)) ;evaluatingat z =0

= (f'(=ct) + W (ct)) (19)

= (f'(u) +h'(—u)) ;change of variables u = —ct

=

fllw) = —h'(=u). (20)

Here, we again make the convenient substitution that u = —ct. Finally, we must solve (20) for the unknown

function f(u). This we do by taking the anti-derivative,
flu) =h(=u)+C,

which is easily checked by taking the derivative with respect to u and recovering (20). To determine the
unknown integration constant C', we can play our usual trick and note that h(+oc) = 0 and that we also



expect f(+oo) = 0, and so, when we evaluate our solution for f(u) at either of these points, we find that
C = 0. Thus, for free boundary conditions, we conclude that the reflected pulse is

fu) = h(=u), (21)

which means that the reflection, as Figure 2b illustrates, is now right-side up (no initial minus sign) and still
left-right reflected (minus sign inside h()). Once again, we substitute into (15) to get the final solution for
reflection from a free boundary,

q(z,t) = h(x 4+ ct) + h(—(x — ct)). ; reflection from free boundary (22)
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