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1 Introduction

We now begin our study of waves. Note that we follow precisely the same outline of attack which we had for
Simple Harmonic Motion. We begin with a simple physical realization, waves on a string (Section 2). We
then proceed to use this example to introduce our basic characterization of wave behaviors in Section 3, and
then begin the general analysis in Section 4.

After using waves on a string to introduce a number of basic wave concepts, to identify the relevant
degrees of freedom, and to derive the equation of motion, we shall conclude this set of notes by investigating
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Figure 1: String system illustrating simple wave behavior

some solutions to the wave equation. Our intention is then to investigate other systems exhibiting wave
behavior before returning to finding the general solution to the wave equation.

2 Physical realization

For our first physical realization of a system exhibiting wave behavior, we use the string system in Figure 1.
The string stretches between two vertical walls held at a distance L apart, one wall at z = 0 and the other
at x = L. The wall at x = 0 holds the string in place at y = 0, where the string attaches to a pin. The wall
at x = L has a small hole at y = 0 through which the string passes. This ensures that the string at this end
also is at position y = 0 while allowing us to apply a force F' to keep the string under constant tension 7.
Otherwise, the string is free to move. The figure shows an example where the string has been “plucked” so
that it now supports a wave as sketched in the figure. The total mass of the length of string between the
walls is M and, thus, the mass per unit length of the string is u = M/ L.

3 Basic Characterization

The second step in understanding a new phenomena is to identify the basic quantities which we hope to
describe and understand. Under appropriate conditions (demonstrated in lecture), vibrations exist where
each little segment of the string in Figure 1 moves up and down periodically. Wave motion often involves
such periodic motion in time, something whose characterization we reviewed in the previous set of notes.
Note that also that the shape of the string shown in the Figure 1 repeats every time we move a distance A
down the string. Thus, waves exhibit periodic behavior not only in time but also in space.

3.1 Descriptions of Spatial Periodicity

We now develop a new vocabulary to describe this new kind of periodicity. It will be directly analogous
to our description of periodicity in time. The only difference is in terminology and the fact that we use
measures of distances instead of times.



o Wavelength A: The distance we must travel down the wave for a full period or cycle. Wavelength is
typically measured in meters, so that the basic unit is 1 m.

o Wavenumber k: The number of cycles or waves which occur in a unit distance. The unit of wavenumber
is typically 1 cycle/m.

e Wave-vector k: The number of radians of phase which we cross in a unit distance, where we associate
27 radians of phase with each cycle. The unit of angular frequency is thus typically 1 radian/m.
Because radians carry no dimension, we frequently omit the radian and write the unit of wave vector

as simply 1 sec™!.

3.2 Conversions

As with the measures of temporal periodicity, all three spatial measures can be converted among each other.
It is important to be able to do this quickly.
If one cycle takes a distance A, then the number of cycles which occur per unit distance is

1 cycle
=, 1

Because there are 27 radians in one cycle, the number of radians which we cross per unit distance are

therefore ) d )
T ra s
= = 2
ez 2)

where we remind ourselves that we may drop the optional “unit” rad. Finally, combining (1-2), we have

k = 27k. (3)

3.3 Dispersion Relation

Given the conversions in Section 3.2 and the conversions among temporal quantities from the previous set of
notes, we can convert any temporal quantity into any other and any spatial quantity into any other. What
we lack is an ability to link one of the spatial quantities into one of the temporal quantities. Then, we can
convert any of the six quantities T, f, w, A, k, k to any other. A relation linking a spatial and temporal
quantity is known as a dispersion relation.

To generate one such relation, consider the wave illustrated in Figure 1. Suppose that the wave travels
to the right with wave speed v. The wave speed does not necessarily refer to the speed of individual parts of
the string, but rather to the speed at which the pattern of the wave moves.

As the wave passes, the point at location zq first moves down into the trough of the oncoming wave and
then comes back up as the crest of the next wave comes directly under the point. This up-down-up process
represents one full period and takes time 7. During this time, the crest of the oncoming wave has moved
precisely one repeat distance, or wavelength \. The speed of the wave, wave speed v, is therefore

v = T (4)

As this relates one of the spatial and one of the temporal quantities together, Eq. 4 qualifies as a dispersion
relation and allows us to convert among any of the six basic wave quantities provided that we know the value
of the wave speed v. To determine this speed for the string, we now proceed to the detailed analysis of the
motion of the string.

4 General Analysis

4.1 Identify the degrees of freedom

The first step in the general analysis is to identify the degrees of freedom, the minimal set of variables
needed to define the configuration of the system at a given instant in time. Because the string consists of



a large collection of particles or segments, we must be able to specify the location of each such segment.
For simplicity, we here consider only up and down motions of the string, thus the degrees of freedom must
specify the x and y coordinates of each segment.

Simplifying approximation — We shall make one single simplifying approximation in our analysis
of the string. We shall assume that the amplitude of the waves on the string is small. One could begin
without this approximation, carry the analysis in full and then take the limit of small amplitudes. It turns
out, however, that in practice the small amplitude approximation is quite accurate even for relatively large
vibrations and that the full analysis becomes quite complicated. Without this approximation, we would
learn little for much additional effort. Thus, we shall assume from this point onward we shall assume that
the amplitude of the waves we study is small.

This approximation has a very important implication of which we shall make much use. If the amplitude
of the waves on the string is small, then the length of string between the walls is always very nearly L. Thus,
there is very little pulling of the string in and out of the hole where we apply the tension and the x position
of each segment changes negligibly. As the x positions of the segments do not change, they do not need to
be specified as degrees of freedom. Moreover, we can use the z position as a way to identify or label the
segments.

To specify the state of the string we need only specify the y-location of each segment at horizontal location
x between the walls. Mathematically, this is the same a giving a function y(z). This specifies the state of
the string because to determine what the string looks like, one would simply plot the given function y(x).

Given y(x) as a way to specify the degrees of freedom, a solution for the string should specify a function
y(x) for each value of time ¢t. Mathematically, this is the same as a function of the form y(z,t) because, for
any given instant in time tg, we can get the state of the string by plotting y(z, tg) versus z. Note that because
a solution y(x,t) is a function of two variables, we shall now be working primarily with partial derivatives.

4.2 Derive the equation of motion

To derive the equation of motion, we express Newton’s law of motion for each particle (string segment)
solely in terms of the solution qy(z,t) and constants specified in the problem. We therefore consider the
free-body diagram for a single individual segment, which we draw in Figure 2 for the segment of string
between positions xz and = + A.

Only two forces act on a given string segment, the tensions from the segments neighboring to the left and
eight: no significant long-range forces act! and the only other contact with the string is with the surrounding
air?. These tension forces act along the direction tangent to the string. Anticipating coming developments,
the figure brakes the tension forces into z and y components. The tensions on either side of the segment
need not be equal3, and so we further identify the components of the tension as being measured either at
point = (T (z) and Ty (z)) or at point  + A (T (x + A) and Ty (x + A)).

Newton’s Law for the states .

Z Fext = Mep@ cofm, (5)

where we use the version of Newton’s law which applies to finite bodies so that we need not assume that the
segment is a small point. In this version of Newton’s law, we need only consider external forces acting on
the system, namely the tensions acting on either end, @.ofm is the acceleration of the center of mass of the
segment, and myp is the mass of the entire segment. Because the mass per unit length of the string is p and
the length of the segment is A%, we have m., = pA.

LThe only two classes of such forces are electromagnetic and gravitational. We do not consider electromagnetic forces. Also,
the effects of the gravitational forces will be negligible compared to the tension forces so long as the string is sufficiently light (u
is small) or the tension sufficiently large (7 large). This holds whenever the the string hangs between the walls without sagging.

2We also ignore air resistance

3Tensions are only equal for massless strings.

4In the figure, the segment may appear to have a length significantly longer than A. This is because we have exaggerated
the amplitude of the involved wave for clarity.
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Figure 2: Free-body diagram for a segment of string



4.2.1 Motion in the x direction

The z-component of (5) gives

Z Fext,a: = Mchlcof m,x
+Tp(x+A)—Ty(x) = (pA)-0=0
=
Tz + A = Tu(o), (6)

where we have been careful to maintain the proper sign conventions on the forces, with the right-hand
direction regarded as positive, and have used the fact that the segments do not move appreciably in the
a-direction (low amplitude approximation) and thus @ ¢ofm,y = 0. Because we have been careful to use the
version of Newton’s law which applies to finite-sized objects, the result (6) applies to any segment. Thus, =
and z + A could be any two points along the string, the x-component of the tension at any two points along
the string are the same, and thus this component of the tension is constant throughout. The horizontal force
7 which we apply to the end of the string (Figure 1) sets the value of this constant. Thus, we have as a
general result

T, = constant = 7. (7)
4.2.2 Motion in the y direction
The y-component of (5) gives
Z Fext,y = MchQcofm,y
+Ty (‘T + A) o Ty (1‘) = (MA) G cof m,y
=

T,(x+A)—T,(x
et D)

where we have divided through by A, making the left-hand side appear like a derivative. It is now quite
natural to consider the limit A — 0. In this limit, the left-hand side approaches the partial derivative
0T, /0zx. (The derivative is partial because we consider the two tensions at the same instant in time and
only z varies in taking the difference.) As we take the the limit A — 0 and shrink the segment to the point
x, the acceleration of the center of mass of the segment becomes the same as the acceleration of the point
at location x. This acceleration then becomes the second partial time derivative of the y-location of the
segment at location z, acofm,y — 0%y(x,t)/0t?. Combining these limiting results we have

or, 0?y(x,t)
8—95 = ’uiatz ) (8)

which makes the physical statement that for each tiny segment, it is the difference in the y-components of
the tension which generates the acceleration.

There is a second, quite physical way to view (8). The net force on a system gives the time rate of change
of its momentum. Because of Newton’s third law of equal but opposite reaction forces, force gives the flow
of momentum from one part of a system to another. The derivative (0T, /0x)A thus gives the difference
between the momentum flowing into a small chunk and the momentum flowing out. Thus should equal the
time rate of change of the momentum of the chunk mv = (uA)dy/0t = pA, where we have defined the
momentum per unit length (momentum density) as

Oy(x,t)
= p—"". 9
P=p— (9)
This quantity then allows us to rewrite (8) as
ar, _  Pylat)
ar Mo



o, _ P (10)
oz ot
Turning back to the problem of finding a valid equation of motion, we must express all quantities in
terms of specified constants and the solution y(x,t). The one quantity remaining in (8) not yet in this form
is the y-component of the tension T},. To determine this component in terms of known quantities, we relate
T, to the known value of T;; = 7 and the tangent of the angle of the line of action of the tension relative to
the horizontal (6 in Figure 2. The slope of the string at any instant in time dy(z,t)/0z gives the tangent of
this angle. Thus,

T, _ _ 8_y
m = tanf = 81‘
=

9y

An equation such as this which relates the basic driving forces in a system (7}, in this case) to the degrees
of freedom is known generally as the constitutive relation.

Finally, substituting the result (11) for the tension into the y-component of Newton’s law (8), we have
the equation of motion,

o (o) _ %
or \ oz T
=
0%y T 0%y

The equation of motion which we have found for the string (12) is precisely of the form of the famous
wave equation,
0? 0?
Py _ 20y (13)
ot? Ox?

where ¢? is some positive constant, which in the case of waves on a string has the value

c= \/f for strings. (14)
u

The next section explores some solutions for the wave equation and determines the meaning of the
mysterious constant ¢ appearing in the wave equation.

4.3 Find a general solution

Finding a general solution to a partial differential equation such as (13) is a difficult task. As a prelude to
this, we begin by considering examples of solutions which demonstrate important wave phenomena. As our
first example, we consider a special class of solutions known as standing waves or normal modes.

4.3.1 Standing waves/Normal modes

As physical inspiration for writing down guess solutions to (13), we recall the demonstration from lecture in
which by driving the string at certain frequencies, one creates very simple motions in which all segments of
the string vibrate up and down perfectly in phase and with the same frequency.

To convert the observation of these natural motions into mathematical form, we consider the motion of
the individual string segments. During the demonstration, a segment such as that labeled xy in Figure 1
exhibited simple harmonic motion in the y-direction. In constructing our coordinate system, we chose the



zr-axis to lay along the string while it is at rest. Therefore, the equilibrium position of the simple harmonic
motion for each segment is y., = 0. Hence, the motion of the particle at point z¢ should have the form

Yz (t) = AIO COS(Wt + ¢0): (15)

where Ay, is the amplitude of the motion and w and ¢ are the angular frequency and initial phase, respec-
tively. As noted above, we observed that all points move up and down with the same frequency and phase,
with only the amplitude A,, depending upon the particular segment we are observing. Thus, for any point
x (not just zo, we may write

Yz (t) = Ay cos(wt + ¢o), (16)

with the same angular frequency and phase for all points x. Mathematically, y, (¢) gives the y-location for
any value of z and t and so actually represents a two-variable function y(z,t) and thus a particular type
of solution to the wave equation. Converting (16) into more standard mathematical notation, we have the
mathematical definition of a standing wave or, equivalently, a normal mode, as any solution of the form

y(a,t) = A(z) cos(wt + ¢¢) math. def. of standing wave. (17)

To complete the specification of such as wave we must find appropriate functions A(z) so that (17)
satisfies the wave equation (13). To do this, we substitute (17) into the wave equation. First, we evaluate
the appropriate derivatives,

2 2
% _d 62(2:6) cos(wt + ¢g)
2
% = —w?A(x) cos(wt + o). 1)

Here, we have used the facts that A(z) depends only on z, so that z-derivatives of it are actually total
derivatives and that two time derivatives of cos(wt + ¢g) turn cos into — sin and — sin to — cos while pulling
out two factors of w. Next, substituting these results into (13), we find

c? <d d‘i(;c) cos(wt + ¢>0)) = (~WA() cos(wt + o))
=
% - J;’_EA(x). (19)

This latter equation looks just like the equation of motion of the simple harmonic oscillator, but with w?/c2
instead of wy and zero for the equilibrium position. We already know several forms of the general solution
of such an equation. Thus, a general solution for A(zx) is

A(z) = Agcos (Ex + qSl)
C
= Agcos(kz+¢1) k=w/c (20)
where ¢ is some initial phase, and we have written the cos in terms of z instead of ¢ because x-derivatives
appear in (19), and we identify the constant multiplying « as k in direct analogue to how we usually multiply

t by w. From this, we see that the angular frequency w and the wave vector k describing the standing wave
always come with the dispersion relation

w
C

4

w

ck. (21)

From this, we at last determine the meaning of the constant c,



Thus, in a standing wave, the ratio of the wavelength to the period is always the constant ¢, which for a
string has the value /7/u. From (4), we see that this constant is precisely what we usually think of as the
wave speed v.

Finally, given the general solution (20) for A(x), we now have the general form for a standing wave,

y(z,t) = Ag cos(kx + ¢1) cos(wt + ¢o). (22)

4.3.2 Boundary Conditions

For any given wavelength, the relation (21) then determines the frequency. Thus, from what we have
considered so far, all frequencies can lead to standing waves. The demonstration in lecture, however, shows
that only certain frequencies result in standing wave solutions. Therefore, it appears that only certain
wavelengths are allowed in the amplitude function A(x) and, therefore, there must be additional conditions
which we have not identified. These are known as boundary conditions.

What we have ignored is the motion of the very last segements of the string. The equation of motion
derived from Figure 2 applies to interior segments only. Thus is because we implicitly assumed that each
segment is in contact with additional segments to the left and to the right. The equations of motion for the
segments at the end, or boundary, of the system will be different. These equations of motion are known as
the Boundary Conditions (BC’s).

There are as many different boundary conditions as there are things to which we can attach the ends of
the string. To derive the boundary conditions, we proceed as with deriving any other equation of motion.
We write down the laws of motion for the end of the string and express them entirely in terms of constants
characterizing the system and the solution y(z,t) and its derivatives. We now consider the two most most
common types of boundary condition.

Fixed/Close Boundary Conditions — These conditions arrise from the type of boundary which we
find in Figure 1. In this case, the ends of the string cannot move from the position y = 0 without breaking
the string. (On the left the string knots around the attaching peg, and on the right the string feeds through
the hole.) This type of boundary condition is thus termed a fized boundary condition. Such a condition is
also frequently termed closed because, in the case of sound, a closed end of a pipe prevents motion of the air
and creates the same type of fixed boundary condition. Mathematically, a fixed boundary condition leads
to the simple condition of zero displacement at the ends of the system,

y(x =x0,t) =0, (Fixed/Closed BC at location x¢) (23)

where xg gives the location of the fixed boundary (z¢g = 0 or L in Figure 1) and the condition holds for all
times t.

Free/Open Boundary Conditions — This second boundary condition is more subtle. It arises when
the end of the system is free to move. To realize this physically in the case of the string, we use the device
in Figure 3a. Here, the end of the string attaches to a massless ring which is free to slide on a frictionless
pole. We require the device of the ring to prevent the tension force F' = 7 from pulling the string through
the hole in the wall at x = L. The ring, however, does not interfere with the motion of the string in the
y-direction and thus leads to a free boundary condition. This condition is also termed open because, again
in the case of sound, such a condition can be achieved in a pipe with an open end which allows the air to
move freely in and out of the pipe.

To derive the mathematical form of this type of boundary condition, we again consider the motion of
the end of the string. In this case, it attaches to the massless ring, and so to determine the laws of motion
for this end, we consider the free-body diagram of the ring, as in Figure 3b. The only forces acting on the
ring come from the contact with the frictionless pole and with the string. Because the pole is frictionless,
the force from the pole is a pure normal force N. The force from the string is the tension force which,
again, acts along the tangent direction to the string with components determined by (7,11), T, = 7 and
T, = 10y(z0, t)/0t, where the partial derivative is evaluated at the location of the ring, which we here call
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Figure 3: Free boundary condition: (a) physical realization; (b) free body diagram for ring
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zo. Because the ring has mass m = 0, we find for the z-component of Newton’s law

Z F, = mag
~N+7 = 0-a,
=
N =

and therefore conclude that the normal force acting on the ring is just force on the right with which we
apply the tension to the string being transmitted along the full length of the string. From the y-component
we learn,

ZFy = may

. 8y(a:0, t)

ox = Oy
=
ay(gO,t) = 0, (Free/Open BC at location ) (24)
r

that the solution must approach a free end with zero slope (as in the sketch in Figure 3a.) at all times ¢

5 What does it all mean?

In this set of notes, we have derived a number of results. It is useful not only to understand how these results
arise directly from Newton’s law, but to also interpret them physically so that we can better understand,
remember and apply them. Below, we summarize the central results from these notes while interpreting
them physically.

Degrees of Freedom y(z) — A function y(z) summarizes the degrees of freedom for the string. This is
because we must give the y-location for each segment in order to know the configuration of the string. (We
already know the z location for each segment because the segments do not move along z.) By sketching
a function y(z), we get a picture of the string and thus determine exactly what our system looks like at a
given time, precisely what the degrees of freedom are supposed to do.

Solution y(z,t) — We require a two-variable function to specify a solution for the string. This is because
a solution should give the degrees of freedom at any time ¢. If we wish to know the degrees of freedom y(x)
at time to, we can get these from a function y(x,t) by substituting the value of the time and generating a
formula for y(z): y(z) = y(z,t = to).

Horizontal component of tension 7, =7 (Eq. 7) — The horizontal component of the tension remains
constant across the entire string. The reason for this is that if the z-components of the tension were not
constant, then some segments of the string would feel more tension on one side than on the other and this
would cause them to move in the z-direction. As the segments of the string do not move in the z-direction,
we conclude that the z-component of the tension must be constant throughout.

Vertical component of tension T, = 79y/0z (Eq. 11, consitutive relation) — The y-component of the
tension is in direct proportion to the tension set at the end of the string 7 and to the slope of the string. For a
given shape of the string, we naturally expect the tension to be in direct proportion to the tension 7 applied
to the string. The basic reason for the proportionality to the slope of the string is that the tension acts
along the direction of the string and thus would have no y-component when the string is perfectly flat and
has zero slope. Only when the string develops some slope (Jy/0x # 0) will the tension have a y-component.
The greater the slope, the greater the proportion of the tension in the y-direction. Thus, we expect T} to
be directly proportional also to dy/dz.

11



Segment response J7T,/0r = pd®y/ot* (Eq. 8) — There are two ways of looking at this equation.
First, it basically just states Newton’s law, Y F), = ma,: on each segment two tension forces pull along
y in opposite directions (hence the derivative), p measures the mass of the segment and 9%y/0t? is the
acceleration. Another way is to rewrite it as 9%y/0t* = (1/u)9T,/0z, which says that the acceleration of
each segment is in direct proportion to the rate of change in the y-component of the tension and in inverse
proportion to the mass per unit length . The inverse proportion to p comes directly from Newton’s law
F = ma. The smaller the mass of each segment the more acceleration 9?y/dt? we expect. The proportionality
to the derivative 0T, /0x comes from the fact that tension pulls in opposite directions on the ends of each
segment (Figure 2). If the tension in the y-direction were constant, then the two tensions would cancel and
the segment would not accelerate. The greater the rate of change of the tension 0T, /0x, the greater the
difference in tension on the two sides of a segment and the greater its acceleration. Thus, we do expect the
acceleration 9%y/0t? to be in direct proportion to 97T, /0.

Conservation of momentum 07, /0x = dp/0t (Eq. 10) — The difference (per unit length) of the force
acting on the two sides of a small chunk gives the time rate of change of the momentum per unit length
of the chunk. This expresses conservation of momentum because it states that the net flow of momentum
into the chunk gives the change of momentum in the chunk. This is a third way of looking at the segment
response equation of the previous paragraph.

Equation of motion/wave equation: 79%y/02% = nd*y/ot*> (Eq. 12) — This equation comes directly
from inserting our result for the y-component of the tension into the result for the segment response. To
understand it physically, we can rearrange it as 9%y/0t?> = (7/u)0%y/0x?. This states that the acceleration of
each segment is directly proportional to the tautness of the string 7 (which makes sense because there should
be more acceleration when there are stronger tension forces), is inversely proportional to the mass density
w of the string (again, sensible because with more mass density, each segment is heavier and accelerates
less easily) and is directly proportional to the curvature in the string. The reason why the amount of
curvature determines the acceleration is that if there is no curvature (i.e., the string is straight), then the
y-components of the tension on either end will be the same and will cancel, leaving no net force. The greater
the curvature, the greater the difference in the y-components on either end of a segment, and thus the greater
the acceleration.

Wave equation: 0%y/0t? = c*0%y/02* (Eq. 13) — This is actually the standard form of a mathematical
equation known as the wave equation. It is mostly a mathematical definition of a standard form for rewriting
the equation of motion which we found. The most interesting part of this equation is to notice that ¢ has
the value /7T for the string.

Dispersion relation: w = ¢k (Eq. 21) — The frequency and wave-vector are in direct proportion
through the constant ¢. To understand this, we consider a typical standing wave y(z,t) = Ag cos(kz) cos(wt).
Inserting into the wave equation, each spatial derivative gives a factor of k£ and each time derivative gives
a factor of w. Thus, we'll find w? = c?k2, and so w = ck. We also understand that ¢, therefore, is the
wave-speed because then ¢ = w/k = 2r/T)/(27/X) = N/T.

Wave speed: v = ¢ = /7/u (Eq. 14) — The speed at which waves travel down the string (defined
presently as the ratio of the wavelength X to the period T of a standing wave) has the value v = /7/u. We
find this result by just rearranging the equation of motion for the string into the standard wave equation
form. This result for the wave speed has a very interesting similarity with the equation for the natural
frequency of a harmonic oscillator wg = 1/k/m. In both cases the quantity which measures how quickly
things happen in the system (the wave speed v for the string and the natural frequency wq for the oscillator)
being equal to the square-root of the ratio between something measuring the tightness of the restoring forces
in the system (the tension 7 in the case of the string and the spring constant k in the case of the oscillator)
and something else measuring the inertia in the system (the mass per unit length u for the string and the
mass m for the oscillator). In both cases, it makes sense that the strength of the restoring forces appears on
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top (so that stronger forces lead to quicker responses) and that the inertia appears on the bottom (so that
heavier systems respond more slowly).

Fixed/closed boundary condition: y(xo,t) =0 (Eq. 23) — If an end of the string at location = =
is fixed, then the string at that point cannot move from having y-coordinate zero at any time ¢ without
breaking.

Free/open boundary condition: 0y(zo,t)/0x = 0 (Eq. 24) — If an end of the string at location
T = zq is completely free to move in the y-direction, then the solution must approach that point with zero
slope at all times t. Physically, we can understand this because we can imagine the free end of the string to
be tied to a massless ring tied to a frictionless rod. Because the ring is massless and because of Newton’s
law F' = ma, there cannot be any force on the ring in the y-direction. Any slope in the string, however,
would immediately create a tension force on the ring in the y-direction according to our result for the vertical
components of the tension. Thus, the solution y(z,t) must always approach a free-end with zero slope.
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