Physics 214 Fall 2001

Exercise Problems # 3

Note: Below is a list of some exercise problems that could be used as a supplement to your preparation
for the exam. These problems have been given as homework or exam problems in previous years.
Note that the list is not comprehensive and it is not meant to cover all the topics taught in the
course so far. You are primarily responsible for the material presented in Lectures (everything
from diffraction on), Problem Sets 8—10, and Lab III. You are expected to understand all the
concepts in this material (including derivations) and to apply them creatively to different situations.
See the “Final Exam Study Tips” announcement on the course web page.

1. Exercise Problem 1:

A single slit of width a is illuminated by an off-axis source. The light from the source has wavelength
A and hits the slit at an angle 6,. Our goal in this problem is to find out how the single-slit diffraction
pattern at a distance screen is changed by having the source off-axis (compared to the “regular” setup
where 6, = 0).

(a) Consider the slit to be N small slits spaced a distance d = a/N apart, where N is very large. The
waves emerging from the various slits do not start in phase, since the light from the source had
to travel different distances to reach them. Assuming that the light arrives at the top slit (n = 0)
with phase ¢,, find the phase of the light that arrives at the bottom slit (n = N — 1) in terms of
0y, ¢o, a, and .

(b) Generalize your result from (a) to find the phase at the n'" slit ¢,,. The n'" slit is at a distance
+a below the top slit. Write your answer in the form ¢, = ¢, + nA¢. Express A¢ in terms of 6,,
®o, a, [, and N (as needed).

(c) Now use the ¢, to find the intensity I(z) at the screen due to the N slits. [Hint: Follow the
procedure used in section 3.2.1 of the Notes, but this time the ¢’s are not all equal.|

(d) Take the limit N — oo to find the intensity at the screen due to the slit of width a. A correct
result cannot have any n’s or N’s in it (why not?). Check your result for the special case 6, = 0.

(e) Explain how the intensity pattern differs from the pattern in the “regular” setup. At what angle
0 does the “central” maximum appear?

2. Exercise Problem 2:
Young & Freedman, Problem 38-6.

3. Exercise Problem 3:
Young & Freedman, Problem 38-16. Assume that § < 1 (use small-angle approximations for ).

4. Exercise Problem 4:

Three very thin slits (widths < A) are illuminated at normal incidence with laser light of wavelength
A. The slits are separated by a center-to-center distance d. The slit in the center (#2) is wider than
the other two. The intensity at the screen due to the central slit alone would be 41; the intensity at
the screen due to either of the other slits alone would be I,,.



(a) Write an expression for the intensity at points on the screen in terms of I, and e*4721, [k = 27/
and Arg; = ro — 11, where ro and r; are the distances from slits #2 and #1 to a point on the
screen. |

(b) What is the maximum possible intensity at any point on the screen due to all three slits?
(c) What is the minimum possible intensity at any point on the screen due to all three slits?

(d) What is the smallest value of # (> 0) at which the maximum possible intensity occurs? ( is the
usual angle to the screen.)

(e) What is the smallest value of # (> 0) at which the minimum possible intensity occurs? [Hint: A
phasor diagram may help.|

5. Exercise Problem 5:

Young & Freedman, Problem 37-50. The index of refraction n of a material is the ratio of the speed
of light in vacuum to the speed of light in the material. It is not hard to show that if the wavelength
of light in vacuum is )y, the wavelength in the material is A, = A,/n: since the frequencies are equal,
An/ Ao = vy /vy = 1/n.

6. Exercise Problem 6:

The graph on the last page of this Exercise Set shows the intensity (in arbitrary units) as a function of
position (y) on a screen which is 1.00 m from an aperture illuminated at normal incidence by laser light
of wavelength 0.628 ym. The aperture consists of some number of equally spaced, equally wide slits.
Determine the number of slits IV, the slit width a, and the center-to-center slit separation d.

7. Exercise Problem 7:
A particle of mass m is trapped in an infinite square well potential with a finite step in the middle.
The width of the well is a and the step (of height V;) is at z = a/2. (See Figure 1.)
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Figure 1: Infinite square well potential.

(a) Compute the (time-independent) wavefunctions of the two lowest-lying energy eigen-
states of the particle.

(b) Compute the energies of the two lowest-lying energy eigenstates of the particle.



Hint:

Look for solutions of the type 9 (z) = Ae*® + Be~*7 in each region where the potential V (z) stays

constant. Then “glue” the wavefunctions smoothly together, i.e., impose the requirements (BCs) that (z)

d
vanish at z = 0, a, and both 1(z) and d_w be continuous at z = a/2.
z

8. Exercise Problem 8:
Now consider a particle of mass m confined in an finite square well potential of height V, and width

a. (See Figure 2.)
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Figure 2: Finite square well potential.

Compute the (time-independent) wavefunctions of the two lowest-energy states of the
particle.

Hint: Use the same strategy as in the previous problem. In this case the smoothness requirements (BCs)

d
are that both ¢(z) and d—¢ be continuous at z =0, a.
T

Write down the equations that the energies of the two lowest-energy states must
satisfy.

Hint: Some of the boundary conditions above will impose constraints on the wavevectors k = v2mE/h
and k' = /2m(E —V,)/h, and thus on the energy E. As a result the energy can only take certain
discrete values, solutions to transcendental equations (e.g., z = tanz is a transcendental equation). Such
equations can only be solved numerically (or graphically). In this problem you are not required to solve
the equations; it is enough just to write them down.
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