For sound and electromagnetic waves, one can carry out very similar derivations. The derivations, in fact, will be exactly the same with analogous quantities appearing in the corresponding places. Rather than repeat the same equations over and over, we choose here to show how to exploit the analogy. Following Eqs. (8) and (11) and the differential form of Ampere's law from our notes on electromagnetic waves, we have the following analogous equations for all three systems
where analogous quantities are aligned in columns.
Next, we write our result for the conservation of energy for the string at the top of a new table, and produce valid equations for the other systems by substituting the analogous quantities from the columns of (17) for each system,
All of the above equations are correct and represent the conservation of energy for the corresponding systems. Note that, for sound and E&M waves, which occur in three dimensions, the energy densities ke(x) and pe(x) are per unit volume (J/m ), and the energy fluxes give power per unit area (Watt/m ). This later quantity actually is the physical definition of intensity, the quantity which we studied in the previous unit in this course. The fact that the formulas for all contain a product of two wave variables explains why we took the ``intensity'' to be proportional to the square of the amplitude.
A few interpretive comments are important for the E&M results. In addition to the analogy, the table properly takes the vector nature of the electromagnetic field into account. The analogy tell us that we should put in the ``ke(x)'' column. However, this accounts only the energy from . When all components are accounted, the final result involves the total square magnitude of the field, so that we put instead of just . Similarly, for ``pe(x)'', the analogy directly tells us to put , but to account for all the components we put in place of . Finally, the analogy would have us put for . Accounting properly for all the signs involved in the equations for each of the components, we know that the result should point in the direction of travel of the wave, which we already learned to be along . Thus, the vector expression we give for is arranged to give both the correct magnitude and direction for the flow of energy.
As a final note, the result given for E&M is correct and represents conservation of energy, but the terms and do not represent ``kinetic'' and ``potential'''' energy in the usual sense. Rather, they give the energy density stored in the electric and magnetic fields, respectively. You should recall these energy density expressions as exactly the same expressions from your class in electromagnetism for the energy density stored, respectively, between the plates of a capacitor and inside of a solenoid!